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Definable separability and second-countability
in o-minimal structures

by

Pablo Andtjar Guerrero

Abstract. We show that separability and second-countability are first-order prop-
erties of topological spaces definable in o-minimal expansions of (R,<). We do so by
introducing first-order characterizations — definable separability and definable second-
countability — which make sense in a wider model-theoretic context. We prove that, within
o-minimality, these notions have the desired properties, including their equivalence among
definable metric spaces, and we conjecture a definable version of Urysohn’s Metrization
Theorem.

1. Introduction. In this paper we deepen the area of tame topology by
introducing first-order notions of separability and second-countability.

O-minimality was born as a tame topological setting in the context of
the o-minimal Euclidean topology [PS86]. Since then o-minimal topology
has been developed extensively beyond this seminal context. The first ex-
ample might be Pillay’s proof that definable groups have a definable man-
ifold group topology [Pil88|, with the subsequent investigation by van den
Dries of definable manifold spaces [vdD98§|, which in recent years has served
as a framework for the development of the theory of definable analytic
spaces [BBT23]. On the other hand, the study of topological spaces of de-
finable functions, inevitably linked to the development of o-minimal analy-
sis [PS01) [AF11], has long been another central topic in o-minimality. The
influential research into parametrizations in [PWO06], which led to the cel-
ebrated Pila—Wilkie theorem, motivated the abstraction of the notion of
definable normed space [Thol2]. This was later generalized to the notion of
definable metric space [Wallbal, and subsequently by the author to the study
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of o-minimal (explicitly) definable topological spaces [AG21], providing thus
a usable framework for the development of o-minimal point-set topology and
functional analysis.

In this paper we introduce and investigate definable analogues of separa-
bility and second-countability, in the context of definable topological spaces
in o-minimal structures. We observe that these provide non-trivial dividing
lines in our context. Specifically, every definable set with the o-minimal Eu-
clidean topology is definably separable and definably second-countable, the
definable Sorgenfrey line (Example is definably separable but not defin-
ably second-countable, and any infinite definable set with the discrete topol-
ogy lacks either property. Our main results (Theorems and state
that, in o-minimal expansions of (R, <), definable separability and definable
second-countability are equivalent to their classical counterparts, similarly
to properties such as definable connectedness and definable compactness. We
conjecture that, under minimal assumptions, definable second-countability
characterizes o-minimal definable topological spaces which are, up to defin-
able homeomorphism, Euclidean (Conjecture .

Our definition of definable separability makes sense in any structure (re-
gardless of o-minimality) and our definition of definable second-countability
invokes o-minimal dimension. Our analysis depends largely on basic o-min-
imality, including the fact that o-minimal dimension coincides with (naive)
topological dimension, and on the Fiber Lemma described in Fact 2.2
Recently, there have been various axiomatic explorations of tame topol-
ogy [SWI9, [DG22] in settings which generalize o-minimality, as well as
non-strongly-minimal dp-minimal expansions of fields. This literature has
yielded, in particular, the existence of a well-behaved notion of dimension in
these settings. Hence, it seems plausible that the definitions proposed here
extend fruitfully to more general frameworks.

The structure of the paper is as follows. In Section [2] we present our
notation and o-minimal machinery. Section [3] includes our definitions of de-
finable separability and second-countability, as well as some preliminary re-
sults showing that these properties behave as expected. In Section [] we
prove our main results, namely the equivalence with the classical properties
in o-minimal expansions of (R, <). We also achieve a deeper characterization
of the properties introduced, and show that they are definable in families.
In Section [5| we investigate definable separability and second-countability in
the context of o-minimal definable metric spaces, proving their equivalence
in this context. We also contrast our definitions with a different definition
of definable separability for definable metric spaces, presented by Walsberg
in [WallBal. Finally, in Section [6] we conjecture an o-minimal definable ver-
sion of Urysohn’s Metrization Theorem.
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In [AGTW2I] Thomas, Walsberg and the present author proved var-
ious results on o-minimal definable topological spaces which can be con-
sidered to capture “definable first-countability”. In particular, it is shown
that every definable topological space in an o-minimal expansion of (R, <)
is first-countable. Consequently, the present paper does not dwell on this

property.

2. Preliminaries

2.1. Conventions and terminology. Throughout we fix a first-order
structure M = (M, ...). “Definable” always means “definable in M, possibly
with parameters”. Every formula we consider is in the language of M. We
use n, m, k to denote positive natural numbers. We use z, y, a, b, . .. to denote
tuples of variables or parameters in M. Given a tuple z, we denote its length
by |z|.

Recall that a family A = {4 : b € B} of definable sets is (uniformly)
definable if there exists a (partitioned) formula ¢(x,y) such that B C MYl
is a definable set and A, = {a € M*l : M = ¢(a,b)} for every b € B.

For any n > 2 we denote by 7 : M™ — M™ ! the projection to the first
n — 1 coordinates, where n will often be clear from context. Given X C M™
and a tuple a € M™, where m < n, let X, ={be M" ™ : (a,b) € X}.

We work mostly in the case where M is an o-minimal expansion of a dense
linear order without endpoints (M, <). In this case, given a definable set X,
we denote its o-minimal dimension by dim X. By the o-minimal Fuclidean
topology we mean the order topology on M and the induced product topology
on M™. For background on o-minimality we direct the reader to [vdD98|. In
particular, we will use o-minimal cell decomposition and uniform finiteness.

Consider a finite collection of definable families of sets, B; = {U} : b € B;}
for i < k. We define their (definable) disjoint union as follows. For each
a = (ai,...,ax) € M*, let i(a) denote the largest i < k with a; > ay. For
cach b = (bi,...,b;) € [IF_, Bi, let Vg p) = Ub(:l))
families B; is the definable family {V,1) : (a,b) € M* x []f_; B;}. Note
that this construction does not involve new parameters.

The disjoint union of the

2.2. O-minimal preliminaries. In this subsection we present our main
tools from o-minimality. They are mostly connected with the Fiber Lemma
stated in Fact

In general we will not assume that our structure M has elimination of
imaginaries. The purpose of the following technical lemma is to circumvent
this fact.

LEMMA 2.1. Let M be an o-minimal structure. Let A = {Ap : b € B}
be an infinite definable family of sets. There exists another infinite definable



4 P. Andujar Guerrero

family A" = {A} : t € I}, where I C M is an interval, with the following
properties:

(1) A C A
(2) A} # AL for any distinct t,s € 1.

Proof. Let A be as in the lemma. We begin by proving the case where
BCM.

Let £ C B x B be the definable equivalence relation on B given by
(b,c) € E whenever A, = A.. For each b € B, let E(b, M) denote the
equivalence class of b by E. Let B©) = {b € B : inf E(b, M) € E(b, M)} and
BW = B\ BO = {be B:inf E(b, M) ¢ E(b,M)}. For each i € {0,1}, let
A = {4, : b€ BDY. Clearly A = A® U AWM. Since A is infinite, there
must be some fixed i € {0, 1} such that A® is infinite.

By o-minimality, for all b,c € B, if inf E(b, M) = inf E(c, M) then
Ay = A.. In particular, the definable set C' = {inf E(b, M) : b € B®}\{—o0}
is infinite. For every ¢ € C, let A, be the set Aj, where b € B is any element
satisfying ¢ = inf E(b, M). Observe that the family {A} : b € C'} is definable,
infinite, and it satisfies A} # A/, for any distinct b, ¢ € C. Finally, again by
o-minimality, there exists an interval I C C such that {A/, : ¢ € I'} is infinite.
This completes the proof of the case B C M.

Now let B C M™. We show the existence of an infinite definable subfamily
of A indexed definably by a subset of M. We proceed by induction on n.
The base case n =1 is trivial. We assume that n > 1.

Consider the projection 7(B) of B to the first n — 1 coordinates. Sup-
pose that there exists some d € w(B) such that the definable family A4; =
{A@y) : t € Bg} is infinite. Then it suffices to pass to this family. Hence
from now on suppose that, for every d € 7(B), the family A4, is finite. For
each d € W(B) and t € By let Ed(t,M) = {S € By : A(d,t) = A(d,s)}a and
set Cqg = {inf Ey4(t, M) : t € By} \ {—oc}. Observe that the sets Cy are
definable uniformly in d. Moreover, by o-minimality, for every d € w(B) we
have |Cy| < | Ag4| < o0 and | A4 < 14 2|Cy|. By uniform finiteness we deduce
that there exists a fixed m such that | A4 < m for every d € n(B).

By o-minimality, for every d € w(B) the sets in Ay are linearly ordered
by the relation <y given by A(g,) <a A(as) Whenever there is t' € By with
Ay = Ay and s < t' for every s € By with A(gqy) = Ags). For each
1 <i<mlet A (i) € Ag denote either the ith set in Ay with respect to the
order <4 or, in the case where |A,| < 7, the maximum one. Observe that, for
each 1 < i < m, the family A(:) = {A),(i) : d € 7(B)} of sets is definable. By
the choice of m we also have |J,.,, A(i) = A. Since A is infinite, it follows
that A(4) is infinite for some fixed i. We apply the induction hypothesis to
A(i) to complete the proof. m
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In Lemma 2.1 above observe that, whenever the sets in A are not unary,
it might be that A’ is not definable over the same parameters as A.
We now present the Fiber Lemma for o-minimal dimension.

Fact 2.2 ([vdD98, Chapter 4, Proposition 1.5, Corollary 1.6]). Let M
be an o-minimal structure. Let X C M"™ x M™ be a definable set and, for
any d € {—00,0,1,...,m}, let X(d) = {a € M™ : dim X, = d}. Then the
sets X (d) are definable and

dim( U {a} x Xa) = dim X (d) + d.
aceX(d)

In particular, dim X = maxo<q<,, dim X (d) + d.

We derive some easy consequences of the above fact in the next two
lemmas.

LEMMA 2.3. Let M be an o-minimal structure. Let {A, : b € B} be an
infinite definable family of pairwise disjoint sets with dim A, > n for every
be B. Then dim|J,c g Ap > n.

Proof. By Lemma [2.7] after passing to a subfamily if necessary, we may
assume that B is an interval and A, N A, = () for any distinct b,c € B. In
particular, the set X = (J,cp{b} x A is in definable bijection with A =
Usen Ab, by means of the projection (b,a) — a. So dim A = dim X. By
Fact dim X > 1+ n, and the result follows. =

LEMMA 2.4. Let M be an o-minimal structure. Let X C M™ x M™ be
a non-empty definable set. For every a € M™ and ¢ € M™ let X(a, M) =
Xo={d e M™: (a,d) € X} and X(M,c) = {a' € M™: (d,c) € X}. Let
A and C denote the projections of X to the first n and the last m coordinates
respectively. Suppose that dim X (M, c) = dim A for every ¢ € C. Then

dimC = maj(dim X(a, M).
ac

Proof. Let f: M™ x M™ — M™ x M"™ be the permutation map given
by f(a,c) = (¢,a). By Fact [2.2] applied to the set X°PP = f(X), and the
fact that dim X(M,c) = dim A for every ¢ € C, we see that dim X =
dim A + dim C. On the other hand, by Fact applied to the set X, we
have

dim X < dimA—l—majcdimX(a,M) <dim A 4 dimC,
ac

and the lemma follows. =

3. Topological definitions and basic results. In this section we in-
troduce our definitions of definable separability and definable second-count-
ability. The former was inspired by a similar notion introduced by Walsberg
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[Wall5a)] in the o-minimal definable metric setting. (We explain the connec-
tion between both definitions in Section ) We also prove some preliminary
results. Recall that a topological space is separable if it has a countable dense
subset, and second-countable if the topology has a countable basis.

Our setting will be that of definable (explicitly in the sense of Flum and
Ziegler [FZ80]) topological spaces.

DEFINITION 3.1. A definable topological space (X,7), X C M", is a
topological space such that there exists a definable family of subsets of X
that is a basis for 7.

Let M be o-minimal. Any definable subset of M™ is a definable topo-
logical space with o-minimal Euclidean topology. Further examples within
o-minimality include the definable manifold spaces studied by Pillay [Pil88]
and van den Dries [vdD98, Chapter 10|, the definable Euclidean quotient
spaces of van den Dries [vdD98, Chapter 10| and Johnson [Johl8], the de-
finable normed spaces of Thomas [Thol2], and the definable metric spaces
of Walsberg [Wall5b|. Peterzil and Rosel [PR20] studied one-dimensional
definable topologies. See the author’s doctoral dissertation [AG2I] for an
exhaustive exploration of o-minimal definable topological spaces.

Given a topological space (X,7) and a subset ¥ C X we denote its
closure in the topology 7 by cl(X). We say that a definable topological
space (X,7) has small boundaries if every definable set Y C X satisfies
dim(cl(Y)\Y) < dimY. Any o-minimal Euclidean space has small bound-
aries [vdD98, Chapter 4, Theorem 1.§].

We now present our definition of definable separability. Observe that the
notion makes sense in any structure, regardless of o-minimality.

DEFINITION 3.2 (Definable separability). A definable topological space
(X, 1) is definably separable if there exists no infinite definable family of open
pairwise disjoint sets in 7.

The reader will note the similarity between Definition [3.2] and the count-
able chain condition (ccc, or Suslin’s condition) for topological spaces, i.e.
the condition that a space does not contain an uncountable family of pair-
wise disjoint open sets. Every separable topological space has the ccc, but
the converse is not true. Our main result (Theorem shows that both
being separable and having the ccc are equivalent to being definably sepa-
rable among topological spaces definable in o-minimal expansions of (R, <),
and so “definable separability” could also be labeled the “definable countable
chain condition”.

Clearly any finite definable topological space is definably separable. On
the other hand, no infinite definable set X with the discrete topology is de-
finably separable, since {{z} : € X} would be an infinite definable family
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of pairwise disjoint open sets. The fact that any definable set in an o-minimal
structure with the o-minimal Euclidean topology is definably separable (Re-
mark below) will follow from showing that these spaces are definably
second-countable and that this property implies definable separability. We
leave it to the interested reader to check that this can also be derived using
o-minimal cell decomposition and Lemma [2:3]

The following easy lemma will be used in Section [4]

LEMMA 3.3. Let (X,7) be a definably separable definable topological
space. Let Y C X be a definable open subset. Then the subspace (Y, T|y)
is definably separable.

Proof. Suppose that (Y, 7|y) is not definably separable, witnessed by an
infinite definable family A of pairwise disjoint open sets. Since Y is open,
we have 7|y C 7, and so A also witnesses that (X, 7) is not definably sepa-
rable. m

In Section [§] we discuss the fact that Lemma[3.3] does not hold in general
if we drop the assumption that Y is open. In other words, the condition of
being definably separable is not hereditary.

We now move on to our notion of definable second-countability.

DEFINITION 3.4 (Definable second-countability). Let M be an o-minimal
structure and let (X, 7) be a definable topological space. We say that (X, 1)
is definably second-countable if there exists a definable basis {U, : b € B} for
the topology 7 such that, for x € X and b € B, if x € Uy then

dim{ce B:z € U. C Uy} = dim B.
We say that {U, : b € B} witnesses that (X, 7) is definably second-countable.

It is easy to see that no infinite definable discrete space is definably
second-countable. We present a less obvious non-example.

EXAMPLE 3.5. Let M be o-minimal and consider the definable Sorgenfrey
line (M, Tsorg), given by the set M with the topology with basis consisting
of right half-open intervals [z,y) for x,y € M. When (M, <) = (R, <), this
is the classical Sorgenfrey line.

Since every non-empty definable open set in (M, Tsorg) is infinite, it is
easy to see, using Lemma , that (M, Tyorg) is definably separable. On
the other hand, (M, Tyorg) is not definably second-countable. To see this
suppose, towards a contradiction, that there is a definable basis B = {U} :
b € B} witnessing that (M, Tyorg) is definably second-countable. Then, for
every € M, the definable set B(z) = {b € B:z € Uy C [x,00)} satisfies
dim B(z) = dim B. Moreover, the definable family {B(z) : x € M} satisfies
B(xz) N B(y) = 0 for any distinct z,y € M. A contradiction follows from
Lemma 2.3
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By the same arguments as above, the Sorgenfrey line topology restricted
to any interval is still definably separable and not definably second-count-
able.

The space (M, Tsorg), as well as other spaces that fail to be definably
second-countable, arise naturally when considering the pointwise conver-
gence topology on definable families of functions. For example, (M, Tsorg)
is the topology induced on M by the collection of characteristic functions
{ Ligoo) : @ €M } with the pointwise convergence topology, given that we
identify each characteristic function 1, ) with its index parameter z.

In order to work with Definition we require a generalization of the
introduced notion that applies to definable subsets of a definable topologi-
cal space and which is maintained after passing to finite unions. Sadly, this
is not the case with the property of being definably second-countable in
the subspace topology. The generalization will involve the following defini-
tion.

DEFINITION 3.6. Let (X, 7) be a topological space and Y C X. A 7-basis
for Y is a family B of open sets such that, for every y € Y and open set A
with y € A, there exists some U € B such that y € U C A. In other words,
B is a family of open sets which contains, for every y € Y, a basis of open
neighborhoods of y.

It is easy to see that, if a topological space (X,7) admits a countable
cover of subsets which admit each a countable 7-basis, then (X, 7) is second-
countable. This is in contrast with the fact that there exist non-second-
countable topological spaces which can be partitioned into finitely many
second-countable subspaces (see [AG21, Example A.16]).

In the definable context the landscape is analogous. In particular, the
aforementioned Example A.16 in [AG21] is definable in (R, +, -, <), and (by
Theorem below) it fails to be definably second-countable, while admit-
ting a partition into two definably second-countable subspaces. We introduce
a definable analogue of the property of having a countable 7-basis. We will
make use of this property to prove that definable topological spaces are
definably second-countable, by induction arguments relying on o-minimal
dimension.

DEFINITION 3.7. Let M be an o-minimal structure. Let (X, 7) be a de-
finable topological space and Y C X be a subset. We say that Y is DSC, @
if it is definable and there exists a definable 7-basis {U : b € B} for Y such

(*) A more descriptive name for being DSC, would be being definably T-second-
countable, however the chosen more succinct terminology seems to make the text more
readable.
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that, for every y € Y and b € B with y € Uy,
dim{ce B:y e U. C Uy} = dim B.
We say that {U, : b € B} witnesses that Y is DSC;.

Clearly, a definable topological space (X, 7) in an o-minimal structure is
definably second-countable if and only if X is DSC;. The use of Definition [3.7]
in this paper relies on the characterization provided by Lemma [3.9) below.
We first present an easy remark.

REMARK 3.8. Let M be an o-minimal structure, (X, 7) be a definable
topological space, Y C X be definable subset and B = {U,, : b € B} be a
definable 7-basis for Y. By definition of 7-basis, observe that B witnesses that
Y is DSC; if an only if, for every y € Y and every definable neighborhood
(in 7) A of y, we have dim{be€ B:y € U, C A} = dim B.

LEMMA 3.9. Let M be an o-minimal structure. Let (X, 7) be a definable
topological space. Any finite union of DSC, subsets of X is DSC.. In par-
ticular, (X, T) is definably second-countable if and only if it admits a finite
covering by DSC; sets.

Proof. By following an inductive argument in the general case, it suffices
to prove that the union of two DSC, sets is DSC.. Hence let X; and X
denote two DSC; subsets of X. For each i € {1,2}, let B; = {U} : b € B;}
be a definable 7-basis for X; witnessing that X; is DSC,.

Let m = max {dim B;, dim By }. If there exists some fixed i € {1, 2} with
dim B; < m, let B! = B; x M™~4mBi and let V(%,c) = U} for each (b,c) € B}
with b € B;. Applying Fact it is easy to see that dim B, = m, and
furthermore that {V;\ : ¥ € B!} still witnesses that X; is DSC,. Hence,
by passing from B; to {V}, : b’ € B!} if necessary, we may assume that
dim Bl = dim BQ.

Now observe that the disjoint union (as described in Section of By
and Bs is a 7-basis for X; U Xs, and furthermore, by Remark (and by
for example Fact , it witnesses that X7 U X5 is DSC,. =

We now present some simple facts about definable second-countability.
ProrosiTION 3.10. Let M be an o-minimal structure.

(1) A definable subspace of a definably second-countable definable topological
space is also definably second-countable.

(2) Any finite subset of a definable topological space (X, 1) is DSC. In partic-
ular, any finite definable topological space is definably second-countable.

(3) Any definable set with the o-minimal Euclidean topology is definably
second-countable.
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(4) If there exists a finite covering { X1, ..., Xp} of X by definable open sub-
sets, each of which is definably second-countable in the subspace topology,
then (X, T) is definably second-countable.

Proof. Let (X, 7) be a definable topological space.

We begin by proving Hence suppose that (X, 7) is definably second-
countable, witnessed by a definable basis B = {U, : b € B}. Let Y be
a definable subset of X. Observe that the family {Y NU, : b € B} is a
basis for the subspace topology 7|y that witnesses that (Y, 7|y ) is definably
second-countable.

We now prove By Lemma , it suffices to prove that every singleton
subset of (X, 7) is DSC;. Hence fix x € X, and let {U, : b € B,} be a
definable basis of open neighborhoods of z (in particular a definable 7-basis
for {z}). For each b € B, let

Bz7b:{C€Bx2x€chUb}.

Pick some b, € B, for which the set B, is of minimum dimension among
all sets B, with b € B,. Clearly the definable family {Uy : b € By, } is a
basis of neighborhoods of 2. Moreover by the choice of b, for every b € By, ,
we have

dim{c € By, :x € U, CUp} =dim By = dim By, .

So {z} is DSC; as desired.

We prove Byit suffices to show that, for any n, the space M™ with
the o-minimal Euclidean topology is definably second-countable. Consider
the definable basis for the o-minimal Fuclidean topology on M™ given by
boxes, that is, B = {(a1,b1) X -+ X (an,by) : a;,b; € M, a; < b;, for i < n}.
Let B = {(a1,b1,...,an,by) : a;,b; € M, a; < b;, fori < n} and, for
any b = (a1,b1,...,an,b,) € B, let U(b) = (a1,b1) x -+ X (an,by). Note
that dim B = 2n. Now observe that, for every z = (x1,...,z,) € M"™ and
b= (ay,b1,...,ayn,b,) € B, we have

(3.1) {ceB:xze€U(c) CU)}
={(a},V),...,a,, b)) ai, b, € M, a; < a, < x; <b, <b;, for i <n},

)N Y n 17 71
and so, whenever x € U(b), the set in has dimension 2n = dim B. It
follows that M™ with the o-minimal Euclidean topology is definably second-
countable.

Finally, we prove Let {X; : ¢ < n} be a finite covering of X by
definable open subsets and, for each ¢ < n, let B; be a definable basis for the
subspace topology 7|x, that witnesses that (X;, 7|x,) is definably second-
countable. For any i < n, since X; is open, the family B; is a 7-basis for X;,
which furthermore witnesses that X; is DSC,. By Lemma 3.9 we conclude
that (X, 7) is definably second-countable. m
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Observe that and in Proposition above imply that the de-
finable manifold spaces of van den Dries [vdD98, Chapter 10] are definably

second-countable.
We now show that definable second-countability implies definable sepa-
rability.

PROPOSITION 3.11. Let M be an o-minimal structure. Let (X, T) be a
definable topological space. If (X, T) is definably second-countable then it is
definably separable.

Proof. We assume that (X, 7) is definably second-countable and not de-
finably separable and reach a contradiction. Hence let {U. : ¢ € C} be a
definable basis that witnesses that (X, 7) is definably second-countable, and
let A = {Ap: b€ By} be an infinite definable family of pairwise disjoint
open sets. We may clearly assume that () ¢ A.

For each b € By, let C(b) = {c € C : 0 # U, C Ap}. Observe that the
definable family {C(b) : b € B4} is infinite and contains pairwise disjoint
sets. By Lemma [2.3| we may fix some b € B4 with dim C(b) < dim C'. Since
0 ¢ A, we have Ay # (). Let us fix some = € Ay and, applying the definition
of basis, some ¢ € C' with x € U, C Ap. Then

0<dim{cd €eC:yeUs CU.} <dimC(b) < dimC.
However this contradicts that {U, : ¢ € C'} witnesses that (X, 7) is definably

second-countable. m

REMARK 3.12. It follows from Propositions [3.10f(3)| and [3.11| that any
definable set in an o-minimal structure with the o-minimal Euclidean topol-
ogy is definably separable. By the sentence below Proposition the same
is true for definable manifold spaces.

4. Equivalence with the classical properties. In this section we
prove our main results. Primarily, we show that definable separability and
definable second-countability are equivalent to their classical counterparts
among definable topological spaces in o-minimal expansions of (R, <). We di-
vide this result into Theorems [£.7] and [£.11} We also show in Proposition [£.14]
that, given a definable family of topological spaces (e.g. a definable family
of subspaces of a fixed definable topological space), the subfamilies of those
that are definably separable and those that are definably second-countable
are both definable (i.e. the properties of definable separability and definable
second-countability are definable in families).

The following lemma is our main tool in proving Theorem

LEMMA 4.1. Let (X, 1) be a definably separable definable topological space.
Let A = {Ap : b € B} be a definable family of open subsets of X and let n
be such that dim Ay < n for every b € B. Then there exists a definable open
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set Z C|JA such that dim Z < n and |J A C cl(Z). (In particular, if (X, T)
has small boundaries then dim|J.A < n.)

Moreover, Z can be chosen to be definable over the same parameters as
the family A and the topology T.

Proof. We fix (X, 7) and A= {4 : b € B} as in the lemma. We proceed
by induction on k, where B C M. The bulk of the proof deals with the
case k = 1. The fact that Z can be chosen to be definable over the same
parameters as A and 7 will follow immediately from this part of the proof.

CASE k = 1. For every x € |JA let B(z) = {b € B: z € Ap}. We
partition | J A into two sets as follows. Let A = {2 € JA : B() is infinite}
and A" = (JA\ A = {2 € A : B(z) is finite}. By o-minimality these
sets are definable.

CLAIM 4.2. The set A™ is open and dim A™ < n.

Proof. The fact that dim A™ < n follows from Lemma applied to
the set {(b,z) € B x A" : 2 € A;}. We show that A" is open.

By o-minimal uniform finiteness there exists m = max {|B(z)| : z € Afi"}
< oo. Fix z € A™. Since B(x) is infinite, we may pick m 4 1 parameters
bo, .. .,bm € B(z). Consider the open set U = (\y<;<,, Ab;- Then € U and
moreover every y € U satisfies | B(y)| > m, which, by definition of m, implies
that B(y) is infinite, and so y € A™. So 2 € U € A™. Hence A™ is open. m

Now, for every b € B, let A} = {x € A,N A" : b = min B(z)}. We define
(4.1) Z = AU J{int(4;) : b € B}.
CLAIM 4.3. The set Z is open, definable, and satisfies dim Z < n.

Proof. 1t is clear that Z is definable and, by Claim [£.2] open.

Observe that the family {A} : b € B} of sets is definable and pairwise
disjoint. Hence the same is clearly true of the family {int(A;) : b € B} and
so, by definable separability of (X, 7), this last family is finite. In particular,
since dim A, < n for every b € B, we see that dim(J {int(4}) : b € B} < n.
Applying Claim we conclude that dimZ < n. =

We conclude the proof of the case k = 1 by showing that |J.A C cl(2).
Towards a contradiction suppose that [ JA\ cl(Z) # 0. Since A™ C Z, note
that |J.A\ cl(Z) C Afi®. Hence, by uniform finiteness, we may pick and fix
z € [JA\cl(Z) satistying |B(z)| = max {|B(y)| : y € U A\cl(Z)}. Now, since
z ¢ cl(Z), there exists an open neighborhood U of = such that U N Z = (.
Since z € A we may pick U so that it also satisfies z € U C ﬂbeB(m) Ap.
Note that every y € U satisfies y ¢ cl(Z) and B(z) C B(y), and so by
maximality of | B(z)| we have B(y) = B(z). Finally, let b = min B(x). Since
x ¢ int(A}) C Z, there must exist y € U such that y € Ay \ Aj. However, by
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the definition of the set Aj, this means that min B(y) < b, which contradicts
the fact that B(y) = B(z).

CASE k > 1. Consider the projection w(B) of B to the first k — 1 coordi-
nates. For every ¢ € m(B), consider the definable family A. = {A.; : t € B.}.
By the case k = 1 there exists a definable open set Z. C |J.A. such that
dim Z. < n and |J A, C cl(Z.). By the definition of the set Z in the proof of
the case k = 1 note that the sets Z. may be chosen to be definable uniformly
in ¢ € m(B) (over the same parameters as the family .4 and the topology 7).

We now apply the induction hypothesis to the definable family {Z. :
¢ € m(B)}, and deduce that there exists a definable open set Z C UcEW(B) Z,.
with dim Z < n and U,.c(p) Zc € cl(Z). In particular,

Uac U CI(ZC)QCI< U ZC)QCI(Z).-

cen(B) cen(B)
We illustrate Lemma [£.1] through the following example.

ExXAMPLE 4.4. For any n > 1 consider the following non-Hausdorff defin-
able topology on M™. Fix a parameter a € M"!. For every x € M™, basic
open neighborhoods of x are sets of the form {z} U ((b,00) x {a}) C M™ for
b € M. Since any two non-empty open sets have non-empty intersection, it
follows easily that this space is definably separable.

For every € M"™, consider the open set Ay = {z} U (M x {a}) C M™.
The family {A; : © € M™} is definable and dim A, = 1 for every x € M".
On the other hand, J,cpm Az = M", so dim | J ¢ psn Az = n. Nevertheless,
the definable open subspace M x {a} is dense and one-dimensional.

Example [£.4] shows that we cannot strengthen Lemma [£.1] by changing
its conclusion to dim(J.A < n (unless the space has small boundaries). On
the other hand, this example is non-Hausdorff. Since there exist Hausdorff
definable topological spaces without small boundaries (e.g. the split interval),
it is open whether this strengthening of the lemma holds for all Hausdorff
spaces.

Through the next lemma we point out that the construction in the proof
of Lemma implies that the property of being definably separable can be
expressed with a single first-order sentence. We will use this fact in Propo-
sition [.14] to show that definable separability is definable in families.

LEMMA 4.5. Let M be an o-minimal structure. Let (X, T) be a definable
topological space, for which we fix a definable basis B = {Uy : b € B}. For
every n, let B(n) C B be the definable family of basic open sets of dimension
at most n, and set X (n) = JB(n). The space (X, ) is definably separable
if and only if, for every n < dim X, there exists a definable open set Z(n) C
X (n) such that X(n) C cl(Z(n)) and dim Z(n) < n.
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Proof. The “only if” direction is given by Lemma applied to the
families B(n). We prove the “if” implication.

Suppose that (X, 7) is not definably separable, and let A = {Ay, : b € B4}
be an infinite definable family of pairwise disjoint open sets. Let us fix the
minimum n such that the family {X(n) N A, : b € B4} is infinite (clearly
0 < n < dimX). Let Z(n) be as described in the lemma. We reach a
contradiction by showing that dim Z(n) > n.

Since X (n) C cl(Z(n)), observe that the family of pairwise disjoint open
sets Z = {Z(n) N Ay : b € B4} is infinite. Now, for any b € By note that,
if dim(Z(n) N Ap) < n, then either n = 0 and Z(n) N A, = 0, or n > 0 and
Z(n)NA, C X(n—1). By the choice of n, it follows that the subfamily of sets
in Z of dimension less than n is finite, since otherwise we would have n > 0
and the family {X(n—1)N Ay : b € B4} would be infinite. Hence the family
{Z(n)N Ay : b€ By, dim(Z(n) N Ap) > n} is an infinite definable family of
pairwise disjoint subsets of Z(n) of dimension at least n. By Lemma we
conclude that dim Z(n) > n. =

When (X, 7) has small boundaries, Lemma can be simplified to pro-
vide a more straightforward characterization of definable separability.

PROPOSITION 4.6. Let M be an o-minimal structure. Let (X,T) be a
definable topological space with small boundaries. That is, dim(cl(Y)\Y) <
dimY for every definable subset Y C X. Fix a definable basis for T and,
for every 0 < n < dim X, let X(n) be the union of all basic open sets
of dimension at most n. Then (X,7) is definably separable if and only if
dim X (n) < n for every n.

Proof. Having small boundaries implies that, for every n, if Z(n) is a
definable dense subset of X (n), then dim Z(n) = dimcl(Z(n)) = dim X (n).
So the proposition follows from Lemma .

We now prove our main theorem about definable separability.

THEOREM 4.7. Let M be an o-minimal expansion of (R, <). Let (X, )
be a definable topological space. The following are equivalent:

(1) (X,7) is definably separable.
(2) (X,7) is separable.
(3) (X, T) has the countable chain condition (ccc).

Proof. The implication |(2)=1(3)|is a simple known fact in general topol-
ogy. The implication |(3)={(1)| (or rather its contrapositive) follows easily
from Lemma We prove [(1)=4(2)]

Suppose that (X, 7) is definably separable. We proceed by induction on
n = dim X. The base case n = 0 is immediate. We assume that n > 0. Let
us fix a definable basis {U, : b € B} for 7. Let C = {b € B : dimU, < n}
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and consider the definable family of sets A = {U. : ¢ € C}. Let Y = [ A.
By Lemma there exists a definable open set Z C Y with dim Z < n and
Y C cl(Z). Since Z is open, by Lemmathe subspace (Z,7|z) is definably
separable. By induction hypothesis we deduce that (Z, 7|z) is separable. Let
Dy denote a countable dense subset of (Z,7|,). Since Y C cl(Z), we note
that Y C cl(D).

Now recall the classical fact that X with the Euclidean topology is sepa-
rable. Let Dy denote a countable subset of X that is dense in the Euclidean
topology. Set D = D1 U Ds. This is a countable set. We show that it is dense
in (X, 7).

Let A be a non-empty open set in (X,7). By passing to a subset if
necessary, we may assume that A is definable. If ANY # () then AN Dy # (.
If ANY = () then, by definition of Y, it must be that dim A = n = dim X . But
then, by o-minimality (the Euclidean topology has small boundaries), the set
A has non-empty interior in the Euclidean topology on X, and consequently
AN Doy ;é @ n

We now turn our attention to proving that a definable topological space
in an o-minimal expansion of (R, <) is definably second-countable if and only
if it is second-countable (Theorem [4.11)). In doing so we will use the next
three lemmas.

LEMMA 4.8. Let M be an o-minimal expansion of (R, <). Let X C R"
be a non-empty definable set and C be countable family (not necessarily
definable) of definable subsets of X, each of dimension less than dim X.
Then C is not a cover of X, i.e. | JC C X.

Proof. By o-minimal cell decomposition we can assume that both X
and every set in C are cells. We may also assume that dim X > 1, since
otherwise C contains only the empty set and the result is trivial. We proceed
by induction on n, where X C R”. In the case n = 1 the sets in C are either
the empty set or singletons, and Y is an interval, so the result follows. We
assume that n > 1.

Consider the projection m(X) of X to the first n — 1 coordinates. Let
C(0) C C be the subfamily of cells C' € C that are graphs of partial functions
on w(X), and let C(1) = C\ C(0). We first consider the case where X is the
graph of a function on 7(X). In this case we have C(1) = () and dim 7 (C) =
dim C < dim X = dim7(X) for all C' € C. By induction hypothesis we have
U{=(C): C eC} C n(X), and consequently | JC C X.

Now suppose that X is not a cell given by the graph of a function on 7(X),
in particular dim 7(X) = dim X —1. For every C € C(1) we have dim 7 (C) =
dimC —1 < dim X — 1 = dim7(X). Hence by induction hypothesis we may
fix a point d € 7(X) \J{=(C) : C € C(1)}. By assumptions on X, the fiber
X, is an interval. Moreover, for every C' € C(0) the fiber Cy is a singleton.
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Since C(0) is countable, there exists e € X4\ J{Cq : C € C(0)}, and we
conclude that (d,e) € X \ JC. =

LEMMA 4.9. Let (X,7) be a topological space and Y C X be a subset
with a countable T-basis. For any T-basis B for Y there exists a countable
subfamily C C B that is also a T-basis for Y.

Proof. Let B, be a countable 7-basis for Y. Let H C B, x B3,, be the set
of pairs (U,U’) € B, x B,, such that there exists some A € B satisfying U C
A CU'. We fix one such set A = A(U',U") € B for every pair (U,U’) € H.
Let C = {A(U,U') : (U,U’") € H} C B. The family C is clearly countable.
We show that it is a 7-basis for Y.

Let z € Y and consider an open set U’ > x. By passing to a smaller
neighborhood if necessary we may assume that U’ € B,,. By definition of B
there exists some A € B satisfying x € A C U’. By definition of B, there
exists some U € B, such that x € U C A. Hence U C A C U’. In particular,
(U,U") € H. Observe that z € A(U,U') CU'. =

The following is the easy direction of Theorem below.

LEMMA 4.10. Let M be an o-minimal expansion of (R, <). Let (X, 7) be
a definable topological space. If (X, T) is definably second-countable then it is
second-countable.

Proof. We prove that every DSC subset of X admits a countable 7-basis.
Let Y C X be DSC,, witnessed by a 7-basis B = {U, : b € B}. That is, for
every y € Y and b € B with y € Uy, we have

(4.2) dim{ce B:z €U, C Uy} = dim B.

Let D be a countable subset of B that is dense in B in the Euclidean topology.
For every y € Y and b € B with y € Uy, equation implies that the set
{c € B:z € U, C Uy} has non-empty interior in B in the Euclidean topology
and so, by density of D, there exists some ¢ € D such that y € U. C U,. We
have shown that {U. : ¢ € D} is a 7-basis for Y. =

We may now present our main result on definable second-countability.

THEOREM 4.11. Let M be an o-minimal expansion of (R, <). Let (X, T)
be a definable topological space. Then (X, T) is definably second-countable if
and only if it is second-countable.

Proof. The “only if” implication is given by Lemma We prove the
“if” direction. Specifically, we prove that any definable subset of X that has
a countable 7-basis is DSC...

Let us fix a definable basis {U,, : b € B} for 7, and definable sets X’ C
X and B’ C B such that {U, : b € B’} is a 7-basis for X’'. We assume
that X’ has a countable 7-basis and prove that it is DSC, by induction on
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dim X’+dim B’. If dim X’ = 0 then the result is given by Proposition |3.10(2)|
and if dim B” = 0 then the result is trivial, so we assume that dim X’ > 0
and dim B’ > 0. In particular, this covers the base case of the induction. To
ease notation we assume that X’ = X and B’ = B.

Let H C X x B x B denote the relation where (z,b,¢) € H whenever
x € U, C Uy For any x € X, b € B and set C' C B let H(z,b;C’) =
{c € C" : (x,b,c) € H}. For each x € X, let B(z) = {b € B : 0 <
dim H(z,b; B) < dim B}. Note that the sets B(x) are definable uniformly
inzx € X. Let Y = {z € X : B(z) # 0}. Observe that the set X \ 'Y is
DSC,, witnessed by {U, : b € B}. We assume that Y # () and describe a
finite partition of Y into DSC; sets, hence proving, by Lemma that X
is DSC;. By passing if necessary to a set in a finite partition of Y, we may
assume that dim B(z) = dim B(y) for all z,y € Y. The idea of the proof by
induction is to find a definable subset Z C Y such that dim Z < dimY and
moreover Y \ Z admits a definable 7-basis of the form {U, : b € C C B}
where dim C' < dim B.

From now on, for any set F/ C X x B and ¢ € B let H(F';¢) = {(x,b) €
F' 2 (2,b,c) € H}. Let F = U,y {y} x B(y). Let C be the set of all
¢ € B such that dim H(F';c¢) = dim F. By Lemma , applied to the set
HnN(F x C), we find that

dimC' = max dim H(y, b; C).
(y,b)eF
On the other hand, by definition of F every (y, b) € F satisfies dim H (y, b; B)
< dim B. It follows that dim C' < dim B.

Now let Z C Y denote the set of points z € Y such that {U, : b € C}
is not a 7-basis for {z}. Note that the family {U, : b € B\ C'} is a 7-basis
for Z, and {U, : b € C} is a 7-basis for Y \ Z. By the latter fact, and
since dim C' < dim B, we deduce from the induction hypothesis that Y \ Z
is DSC..

We now prove that dim Z < dimY. We may then apply the induction
hypothesis to derive that Z is also DSC,, completing the proof of the the-
orem. We show that dim Z < dimY by assuming that dim Z = dimY and
deriving a contradiction using the fact that X has a countable 7-basis.

Let G = J,cz{2} x B(2) C F. Recall that, by assumption on Y, we have
dim B(z) = dim B(y) for all x,y € Y. Since by assumption dim Z = dimY,
it follows from Fact that dim G = dim F. Applying the definition of C
we deduce that every b € B\ C satisfies

(4.3) dim H(G;b) < dim H(F;b) < dim F = dim G.
Finally, since {U, : b € B\C} is a 7-basis for Z C X, by Lemma[4.9] there

exists a countable set D C B\ C such that {U, : b € D} is a 7-basis for Z.
Observe that, for any z € Z and b € B(z), by definition of 7-basis there
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must exist some ¢ € D such that z € U, C Uy, meaning that (z,b,¢) € H.
Hence the sets {H(G;b) : b € D} cover G. By Lemma[4.§land (4.3) we reach

a contradiction. m

In the following lemma we extract from the proof of Theorem that
the property of not being definably second-countable can be expressed with
a single first-order formula. We use this later in Proposition [£.14] to show
that definable second-countability is definable in families.

LEMMA 4.12. A definable topological space (X,T) is definably second-
countable if and only if there do not exist a non-empty definable set Z C X,
two definable families of open sets {U, : b € B} and {V, : b € B'}, and a
definable set G C Z x B, with the following properties:

(1) For every (z,b) € G we have z € Uy,.
(2) {V,: b€ B'} is a T-basis for Z.
(3) For every b € B" we have

dim{(z,0) e G: z € Vy CUp} < dimG.

Proof. For the “if” implication, suppose that (X,7) does not admit a
construction as described in the lemma. We may then show that (X, 7) is de-
finably second-countable by following the proof of Theorem up to (4.3)),
and then reaching a contradiction using the fact that, by assumption, Z, G,
{Up : b € B}, and {Up : b € B\ C} as described in the said proof cannot
exist.

We now prove the “only if” implication. Hence let Z C X, {U, : b € B},
{V, : b€ B'}, and G C Z x B be as described in the lemma. Towards a
contradiction suppose that (X, 7) is definably second-countable, witnessed
by a definable basis {A. : ¢ € C'} for 7.

Let us define E C Zx BxC x C to be the relation given by (z,b,¢,¢') € E
whenever z € A. C Ay C Uy. For any ¢, € C, let E(G;c,d) = {(z,b) €
G : (z,b,c,d) € E}. Let D = {(¢,d) € C x C : dim E(G;¢,d) < dimG}.
Further, for each (z,b) € G let E(z,b; D) = {(¢,¢) € D : (2,b,¢,¢') € E}.
We prove that, for every (z,b) € G, we have 0 < dim E(z,b; D) = dim D.
By Lemma it then follows that there exists some (¢,c¢’) € D such that
dim F(G; e, ) = dim G, which contradicts the definition of D.

Hence let us fix a pair (z,b) € G. Let ' = {d € C : z € Ay C Up}.
Observe that, since {A. : ¢ € C'} witnesses that (X, 7) is definably second-
countable (see Remark [3.8), we have dim ¢’ = dim C.

CLAIM 4.13. For each ¢ € C', we have dim{c € C : (¢,c') € E(z,b; D)}
=dimC.

Proof. Let us fix ¢ € C'. Since {Vy : b/ € B’} is a 7-basis for Z, there ex-
ists some ' € B’ such that z € Vjy C Ay. Let C" ={ce C:z€ A. C Vy}.
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Since {A; : ¢ € C} witnesses that (X,7) is definably second-countable
(see Remark [3.§), note that dim C” = dim C. We show that C” x {¢} C
E(z,b; D).

For any ¢ € C”, since A. C Vyy C Ay, we have E(G;¢, ) C {(z,b) € G :
z € Vy C Up}. Condition in the lemma states that the last set has
dimension less than dim G, and so we deduce that (¢,¢’) € D. We have
shown that C” C {c € C': (¢,') € E(z,b; D)} C C. Since dim C” = dim C,
the claim follows. =

Using the fact that dimC’ = dimC and Claim together with
Fact we find that

2dim C = dim U {ce C:(c,d) € E(z,b; D)} x {} <dim E(z,b; D).
cdeC’
Since E(z,b; D) C D C C x C, we conclude that dim F(z,b; D) = dim D =
2dimC > 0. n

A family {(X,, 7.) : ¢ € C'} of topological spaces is (uniformly) definable
if there exists a partitioned formula ¢(z,y,z) and a definable set B°PP C
MWI+2l with the following properties. The set C' is the projection of BPP to
the last |z| coordinates and, for every ¢ € C, the family of sets {¢(M, b, c) :
b € B.}, where B. = {b € MW : (b,c) € B°°?} and (M, b,c) = {a € M*l :
M E ¢(a,b,c)}, is a basis for the topology 7.. An example of a definable
family of topological spaces is any definable family of subsets of a given
definable topological space, with the subspace topology.

We show that the properties of definable separability and definable second-
countability are definable in families.

PROPOSITION 4.14. Let M be an o-minimal structure. Let C = {(X., 7¢) :
c € C} be a definable family of topological spaces. There exist definable sub-
sets Csep and Cse of C' such that, for every c € C, the space (X, 1) is

(1) definably separable if and only if ¢ € Cyep,
(2) definably second-countable if and only if ¢ € Cyc.

Moreover, Csep and Cs. can be chosen definable over the same parameters as

the family C.

Proof. By Lemmal[4.5]and Definition [3.4] respectively, note that the prop-
erties of being definably separable and definably second-countable are main-
tained after passing to an elementary extension or substructure, and conse-
quently we may assume that M is saturated.

Let Csep denote the set of elements ¢ € C such that the space (X, 7c)
is definably separable. Definition [3.2] and Lemma [2.1] show that a definable
topological space is definably separable if and only if there does not exist an
infinite definable family {A4; : ¢ € I'} of open subsets of X such that I C M
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is an interval and furthermore A; N Ay = () for any distinct ¢, s € I. For
any ¢ € C, let us say that a formula ¢(x,y, z), with |y| = 1, witnesses that
(Xe¢, ) is not definably separable if there exist some parameters d € M
and some interval I C M, such that the family of sets 4; = {a € Ml : M =
o(a,t,d)}, for t € I, has the properties described above. For every formula
o(z,y,z) with |y| = 1, observe that the set of all ¢ € C such that ¢(z,y, z)
witnesses that (X, 7.) is not definably separable is definable over the same
parameters as C. Consequently, Cqep is an intersection of sets definable over
the same parameters as C. Similarly, using Lemma , observe that C'\ Cyep
is also an intersection of sets definable over the same parameters as C. By
a standard saturation argument we infer Cgp is definable over the same
parameters as C.

The proof that Cgc, the set of all ¢ € C such that (X, 7.) is definably
second-countable, is definable, runs analogously, using Definition [3.4] and
Lemma .

REMARK 4.15. Let M be an o-minimal structure and (X, 7) be a defin-
able topological space. Let A = {A; : b € B} be a definable family of open
subsets of X of dimension at most n. Observe that the proof of Lemma
provides an explicit construction for a definable set Z C | J.A, and shows that
Z is open in X and dense in |J.A. Furthermore, it applies the assumption
that (X, 7) is definably separable to derive that dim Z < n. Specifically, if
B C M then Z is simply given by equation , and in the general case the
same idea is applied recursively. Note that the construction of Z depends
uniformly on the family A.

It follows that in Lemma one may fix the sets Z(n), for every n <
dim X, to be the unique sets described in the proof of Lemma (for A =
B(n)), and then (X, 7) is definably separable if and only if dimZ(n) < n
for every n < dim X. Furthermore, if {(X.,7.) : ¢ € C} is a definable family
of topological spaces, then, for each n, the corresponding sets Z.(n) C B.(n)
are definable uniformly in ¢ € C. This can be used to yield a new proof
of Proposition 4.14{(1)| which provides an explicit description of a formula
defining the set Cgep.

A similar approach, using the proof of Theorem [4.11] and Lemma [4.12
can be used to give an explicit description of a formula defining the set Cy.

in Proposition .14

5. Definable metric spaces. In this section we explore definable sep-
arability and second-countability in the context of o-minimal definable met-
ric spaces. Definable metric spaces were introduced and studied by Wals-
berg [Wall5al. Although Walsberg works under the assumption that M
is an o-minimal expansion of an ordered field, any notion that we borrow
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from [Wallba], including the definition of definable metric space below, still
makes sense in the ordered group setting.

DEFINITION 5.1. Let M = (M,0,+,<,...) be an expansion of an or-
dered group. A definable metric space is a tuple (X, d), where X is a defin-
able set and d : X x X — M= is a definable map that satisfies the metric
axioms, namely identity of indiscernibles, symmetry and subadditivity.

Given a definable metric space (X,d), * € X, and t € M9 we denote
the open ball of center x and radius ¢ by By(z,t) = {y € X : d(z,y) < t}.
A definable metric space (X,d) is a definable topological space with the
topology generated by open balls. We denote this topology by 74.

In [Wall5a] Walsberg defined definable separability among o-minimal de-
finable metric spaces to be the property of not containing an infinite de-
finable discrete subspace. His main result [Wall5a, Theorem 9.0.1] implies
that a metric space definable in an o-minimal expansion of the field of re-
als is definably separable if and only if it is separable. On the other hand,
Walsberg’s definition of definable separability is not suitable for general o-
minimal (non-definably-metrizable) definable topological spaces, since these
include for example the Moore plane [AG21, Example A.12|, which is de-
finable in (R, +, -, <) and separable but nevertheless the subspace R x {0}
is discrete. Another example, this time one-dimensional, is given by [AG21],
Example A.9].

We describe the precise relationship between Walsberg’s definition of
definable separability (generalized to all definable topological spaces) and
ours by means of the next definition, lemma and proposition.

DEFINITION 5.2. A definable topological space (X, 7) is hereditarily de-

finably separable if every definable subspace of (X, 7) is definably separable
(in the sense of Definition [3.2).

The next lemma states that, as long as M has definable choice, Wals-
berg’s definition of definable separability is equivalent, in our terminology,
to being hereditarily definably separable.

LEMMA 5.3. Suppose that M has definable choice. A definable topologi-
cal space (X, T) is hereditarily definably separable if and only if it does not
contain an infinite definable discrete subspace.

Proof. Any infinite discrete space is clearly not definably separable and
so the “only if” implication follows.

For the “if” implication, let Y C X be a definable subset such that the
subspace (Y, 7|y) is not definably separable. Let A = {A, : b € B} be
an infinite definable family of pairwise disjoint open sets in (Y, 7|y). Using
definable choice let f : B — |J A be a definable map such that f(b) € Ay for
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every b € B, and satisfying moreover f(b) = f(c) whenever A, = A.. Then
the image subspace (f(B), 7| ¢(p)) is an infinite definable discrete subspace. =

Observe that, by Propositions [3.10(1)| and [3.11} any definably second-
countable definable topological space in an o-minimal structure is hereditar-
ily definably separable.

Recall the fact from general topology that any separable metric space is
hereditarily separable. We show that the same holds in the definable setting
whenever the underlying structure has definable choice.

PROPOSITION 5.4. Let M be an expansion of an ordered group with de-
finable choice (e.g. M is an o-minimal expansion of an ordered group). Let
(X, d) be a definable metric space. The following are equivalent:

(1) (X,d) is definably separable.

(2) (X,d) is hereditarily definably separable.

(3) (X,d) does not contain an infinite definable discrete subspace (that is, it
is definably separable in the sense of Walsberg [Wallbal).

Proof. The equivalence [(2)=](3)]is given by Lemmal5.3] The implication
(2)={(1)|is trivial. We prove |(1)=4(3)| by contraposition.

If the ordered group structure on M is discrete then every definable
metric space is discrete, and so definably separable if and only if finite. So
we may assume that the ordered group is dense, i.e. M>? does not have a
minimum. In particular, since for every 0 < s < t we have either 2s <t or
2(t — s) < t, observe that, for every ¢ > 0, there exists s > 0 with 2s < ¢.

Let (X,d) be a definable metric space and Y be an infinite definable
discrete subspace. By definable choice one may choose definably, for each
x €Y, some g, > 0 such that 2¢, < d(x,y) for every y € Y \ {z}. We
prove that the infinite definable family {By(z,e,) : © € Y} of open balls is
pairwise disjoint, and so (X, d) is not definably separable.

Towards a contradiction suppose that there exist z,y € Y and some
z € Bg(x,e5) N Bq(y, €y). Then by the triangle inequality d(z,y) < d(z, z) +
d(z,y) < ez + ey < 2max {e,,ey}. Without loss of generality suppose that
€z = max {e;, ey }. Then this contradicts the fact that 2e, < d(x,y). =

Since definable metric spaces are, by definition, defined only in expansions
of ordered groups, Proposition addresses all definable metric spaces in
o-minimal structures.

In what follows we restrict our scope exclusively to the o-minimal setting.
Recall that in general topology a metric space is separable if and only if it is
second-countable (if and only if it is hereditarily separable). We prove that
this equivalence also holds in the o-minimal definable context. Combining
this equivalence with the one in Proposition [5.4] we reach the main result of
this section.
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THEOREM 5.5. Let M be an o-minimal expansion of an ordered group.
Let (X, d) be a definable metric space. The following are equivalent:

(1) (X,d) is definably separable.

(2) (X,d) is hereditarily definably separable.

(3) (X,d) does not contain an infinite definable discrete subspace (that is, it
is definably separable in the sense of Walsberg [Wallbal).

(4) (X,d) is definably second-countable.

The equivalence between |(1)H(3)|in Theorem |5.5|is provided by Proposi-
tion Furthermore, the implication |[(4)=(1)|is given by Proposition

Hence it remains to show that definable separability implies definable second-
countability. We prove this in Lemma below.

In proving Lemma we will use the next simple ad hoc lemma. It
follows from an easy application of the triangle inequality, and so we leave
the proof to the reader. Note that it does not require that the metric map d
be definable.

LEMMA 5.6. Let M be an expansion of an ordered divisible group and
(X, d) be a definable metric space. Let X', Y C X be subsets with X' C cl(Y).
Then {By(y,t) : y € Y, t > 0} is a 74-basis for X'. Specifically, for allz € X'
and t > 0, we have © € By(y,s) C By(z,t) for every y € By(z,t/3)NY and
t/3 <s<2t/3.

In the proof of Lemma below recall that in every o-minimal expansion
of an ordered group the group is necessarily divisible.

LEMMA 5.7. Let M be an o-minimal expansion of an ordered group and
(X,d) be a definable metric space. If (X,d) is definably separable then it is
definably second-countable.

Proof. Let (X,d) be a definably separable definable metric space. Let
7 = 74. Our proof proceeds by showing that every definable subset X' C X
is DSC; by induction on the dimension of a definable set ¥ C X such
that X' C cl(Y). If dimY = 0 then, by Hausdorffness of definable metric
spaces, Y is also closed and so X’ C Y is finite and the result is given
by Proposition This covers the base case. Now, suppose that n =
dimY > 0. To ease notation we consider X’ = X.

Let Y’ denote the union of all (basic) open definable sets of dimension
at most n — 1 in the subspace topology 7|y. Let Xo = X Nel(Y \ Y’) and
X7 = X \ Xo. Since X C cl(Y), we have X; C cl(Y’). Observe that, by
Lemma , there exists a definable set Z C Y’ with dimZ < n — 1 and
such that Y’ C ¢l(Z). In particular, X; C cl(Z). By induction hypothesis we
deduce that X is DSC,. We show that X is DSC;, which completes the
proof by application of Lemma [3.9
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Let By = {B4(y,t) : y € Y, t > 0}. By Lemma note that By is a
7-basis for X (in particular for X(). We prove that By witnesses that X is
DSC; by showing that, for every x € Xy and ¢ > 0, we have

dim{(y,s) € Y x MY : x € By(y,s) C By(z,t)} = dim(Y x M~Y).

Hence let us fix x € Xg and t > 0. By Lemma [5.6] we see that

{(y,s) :y € Y N By(x,t/3),t/3 < s < 2t/3}
C{(y,s) €Y x M”":z € By(y,s) C By(z,1)}.

Now notice that, by definition of the set Y/, any definable open set A with
ANY \Y' # 0 satisfies dim(ANY) = n = dimY. In particular, since
Xo=XnNnc(Y\Y') and z € Xy, we have dim(Y N By(z,t/3)) = dimY.
Applying Fact we conclude that

dim{(y,s) :y € Y N By(z,t/3), t/3 < s < 2t/3}
=dimY 4 1 = dim(Y x M~?),
as desired. m

The above proof can be streamlined if one assumes that (X,7) has
small boundaries. This property was proved for definable metric spaces in
o-minimal expansions of ordered fields in [Wall5al Lemma 9.2.11|. Although
it is likely that it holds for metric spaces definable in o-minimal expansions
of groups too, the author is not aware of any proof of this.

The Sorgenfrey line (Example[3.5]defined in (R, <)) is a classical example
of a (non-metrizable) topological space that is hereditarily separable but not
second-countable. The Moore plane and the Sorgenfrey plane are examples
of (non-metrizable) topological spaces that are separable but not hereditarily
separable, and in particular not second-countable. An analogous landscape
is present in the o-minimal definable setting. That is, the three aforemen-
tioned examples are definable in the ordered field of reals, and furthermore
have definable analogues in any o-minimal expansion of an ordered field (see
e.g. JAG21, Example A.12|) which display definable topological properties
analogous to the ones described for the classical spaces.

6. Towards a definable Urysohn metrization theorem. We say
that a definable topological space is affine if it is definably homeomorphic
to a set with the o-minimal Euclidean topology. The characterization of o-
minimal affine definable topological spaces has been the subject of ongoing
research in [vdD98 Chapter 10] (manifold and quotient spaces), [Wall5h]
(metric spaces), [Johl8| (quotient spaces) and [PR20] and [AGT23| (one-
dimensional spaces).
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We end this paper by conjecturing that, in o-minimal expansions of or-
dered fields, definable second-countability characterizes affine definable topo-
logical spaces. This conjecture is informed by the contents of Chapter 7 and
Example A.16 in [AG21], the latter describing a Hausdorff and regular de-
finable topological space in (R, +, -, <) that can be partitioned into two de-
finable subsets where the subspace topology is Euclidean, but nevertheless
the space is not definably second-countable (in particular not affine). We
conjecture that this condition is the only obstacle to achieve affineness.

CONJECTURE 6.1 (Definable Urysohn Metrization Conjecture). Let
(X,7) be a definable topological space in an o-minimal expansion of an
ordered field. Then (X,7) is definably homeomorphic to a set with the
o-minimal Euclidean topology if and only if it is Hausdorff, regular, and
definably second-countable.

The classical Urysohn Metrization Theorem states that every Hausdorff
regular second-countable topological space is metrizable. The main result
(Theorem 9.0.1) in [Wallba| states that a definable metric space in an o-
minimal expansion of an ordered field is affine if and only if it is definably
separable. By Proposition [3.11] it follows that Conjecture [6.1]is valid among
definable metric spaces. Furthermore, in order to prove the conjecture it
would suffice to show that any Hausdorff, regular, definably second-countable
space (X, 7) is definably metrizable, hence its name.

Theorem 9.1 in [AGT23] states that a one-dimensional Hausdorff defin-
able topological space in an o-minimal expansion of an ordered field is affine
if and only if it does not contain a subspace definably homeomorphic to an
interval with the discrete or Sorgenfrey line topologies. Since these topologies
are not definably second-countable (see Example addressing the latter),
it follows (by applying Proposition |3.10(1)) that Conjecture [6.1]is also valid

among one-dimensional spaces.
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