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Conventions

Throughtout M = (M, . . .) denotes a first order structure.

Definable means in M possibly with parameters.

A (uniformly) definable family S of subsets of Mn is a family given by
some formula ϕ(x , y), |x | = n, such that

S = {ϕ(Mn, a) : a ∈ M |y |}.

A family of sets S is (finitely) consistent if every finite intersection of
sets in S is nonempty.

Types are complete and over M.

We adopt the convention of considering types to be consistent
families of definable sets. In particular an n-type is an ultrafilter in
the boolean algebra of definable subsets of Mn.

A type p(x) is definable if, for every formula ϕ(x , y), the set
{a : ϕ(M |x |, a) ∈ p(x)} is definable.
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The main result

A family of sets S is downward directed if, for every S0, S1 ∈ S, there
exists S2 ∈ S with S2 ⊆ S0 ∩ S1, and moreover S does not contain the
empty set.

Given two families of sets S and F , we say that F is finer than S if, for
every S ∈ S, there is some F ∈ F such that F ⊆ S .

Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(1) Every downward directed definable family of sets extends to a
definable type.

(2) For any definable type p and definable family of sets S ⊆ p there
exists a downward directed definable family F ⊆ p finer than S.
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Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(1) Every downward directed definable family of sets extends to a
definable type.

(2) For any definable type p and definable family of sets S ⊆ p there
exists a downward directed definable family F ⊆ p finer than S.

It follows that a definable family of sets in an o-minimal structure extends
to a definable type iff it admits a finer downward directed family.
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Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(1) Every downward directed definable family of sets extends to a
definable type.

(2) For any definable type p and definable family of sets S ⊆ p there
exists a downward directed definable family F ⊆ p finer than S.

We can use Theorem A to characterize a notion of definable compactness
for o-minimal definable topologies.
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Definable topologies

Definition (Definable topological space)

A topological space (X , τ) is definable if it has a basis that is definable.

Examples in o-minimal structures:

The o-minimal “euclidean” topology.

Definable manifold spaces (e.g. definable groups [Pillay 1988]).

Some definable spaces of C r funtions with r -norm [Thomas 2012].

Definable metric spaces [Walsberg 2015].

The Split interval, Alexandrov double circle, Moore plane . . .

Other examples [A. Pillay (1987)]:

The valuation topology in a valued field (F ,+, ·,V ).

The topology in (C,+, ·,P), where P is a unary predicate for the
reals.
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Defining Definable Compactness

Definition (Definable compactness)

A definable topological space (X , τ) is definably compact if every
downward directed definable family of closed sets has nonempty
intersection.

This definition has received attention in recent years by Fornasiero and
Johnson.

Some facts:

The image of a definably compact space by a definable continuous
function is definably compact.

In a definably complete field M, any definable continuous function
f : K → M, where K is definably compact, reaches its maximum and
minimum.

Definable compactness allows us to generalize results on finite families
of definable sets to infinite definable families.
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Type-compactness

Let p be a type in some definable topological space (X , τ), with X ∈ p.
Say that x ∈ X is a limit of p (in (X , τ)) if x ∈ C for every closed set
C ∈ p.

Definition (type-compactness)

A definable topological space (X , τ) is type-compact if every definable
type p with X ∈ p has a limit in X .

This notion was considered by Hrushovski and Loeser (2016) in their book
“Non-Archimedean Tame Topology and Stably Dominated Types”.

Lemma 1

Let (X , τ) be a definable topological space. TFAE

(1) (X , τ) is type-compact.

(2) Every definable family C of closed subsets of X that extends to a
definable type satisfies that ∩C 6= ∅.
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Pablo Andújar Guerrero (with Will Johnson) (Fields Institute)Types and definable compactness 2022 6 / 23



Type-compactness

Let p be a type in some definable topological space (X , τ), with X ∈ p.
Say that x ∈ X is a limit of p (in (X , τ)) if x ∈ C for every closed set
C ∈ p.

Definition (type-compactness)

A definable topological space (X , τ) is type-compact if every definable
type p with X ∈ p has a limit in X .

This notion was considered by Hrushovski and Loeser (2016) in their book
“Non-Archimedean Tame Topology and Stably Dominated Types”.

Lemma 1

Let (X , τ) be a definable topological space. TFAE

(1) (X , τ) is type-compact.

(2) Every definable family C of closed subsets of X that extends to a
definable type satisfies that ∩C 6= ∅.
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Defining definable compactness

Definition (Definable compactness)

A definable topological space (X , τ) is definably compact if every definable
downward directed family of nonempty closed sets has nonempty
intersection.

Definition (type-compactness)

A definable topological space (X , τ) is type-compact if every definable
type p with X ∈ p has a limit in X .

Definition (Curve-compactness [Peterzil and Steinhorn 1996])

A definable topological space (X , τ) is curve-compact if every definable
curve γ : (a, b)→ X is completable, which means that limx→a+ γ(x) and
limt→b− γ(x) both exist.
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Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(1) Every downward directed definable family extends to a definable type.

(2) For any definable type p and definable family of sets S ⊆ p there
exists a downward directed definable family F ⊆ p finer than S.

Corollary 2 [AG 2021+]

Let M be o-minimal and let (X , τ) be a definable topological space.
TFAE.

(1) (X , τ) is definably compact.

(2) (X , τ) is type-compact, i.e. every definable family of closed subsets of
X that extends to a definable type has nonempty intersection.
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Corollary 2 [AG 2021+]

Let M be o-minimal and let (X , τ) be a definable topological space.
TFAE.

(1) (X , τ) is definably compact.

(2) (X , τ) is type-compact, i.e. every definable family of closed subsets of
X that extends to a definable type has nonempty intersection.

Proof

(2)⇒(1): Let C be a definable downward directed family of closed sets.
Then C extends to a definable type, and so ∩C 6= ∅.

(1)⇒(2): Let C be a definable family of closed sets that extends to a
definable type. Let F be a finer definable downward directed family.
Consider F ′ = {cl(F ) : F ∈ F}. By definable compactness there exists
x ∈ ∩F ′. Clearly x ∈ ∩C.
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Let (D) denote the union of the following classes of dp-minimal theories:

linearly ordered dp-minimal theories;

unpackable VC-minimal theories;

dp-minimal theories with definable Skolem function.

Theorem 3 [Simon and Starchenko 2014]

Suppose that Th(M) is in (D). Let S be a consistent definable family of
sets. Then S can be partitioned into finitely many subfamilies, each of
which extends to a definable type.

Given a family of sets S, a set T is a transversal for S if T ∩ S 6= ∅ for
every S ∈ S.

Corollary 4

Suppose that Th(M) is in (D). Let C be a consistent definable family of
closed sets in some type-compact definable topology. Then C has a finite
transversal.
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Theorem 5 (Characterization of definable compactness [AG 2021+])

Suppose that M is o-minimal. Let (X , τ) be a definable topological space.
TFAE.

(1) (X , τ) is definably compact.

(2) (X , τ) is type-compact.

(3) Any consistent definable family of closed sets has a finite transversal.

Moreover all the above imply and, if τ is Hausdorff or M has definable
choice, are equivalent to:

(4) (X , τ) is curve-compact.
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Back to the main theorem

Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(1) Every downward directed definable family extends to a definable type.

(2) For any definable type p and definable family of sets S ⊆ p there
exists a downward directed definable family F ⊆ p finer than S.
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Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(1) Every downward directed definable family extends to a definable type.

Corollary (of Simon-Starchenko) 6

Suppose that Th(M) belongs in (D). Then every downward directed
definable family of sets extends to a definable type.

Proof: By Simon-Starchenko (Theorem 3) if S is downward directed there
exist finitely many definable types p1, . . . , pn such that every S ∈ S
belongs in some pi . We claim that S ⊆ pi for some i . Otherwise there
exists, for every i , some S(i) ∈ S with S(i) /∈ pi . By downward
directedness there exists S ∈ S with S ⊆ S(1) ∩ · · · ∩ S(n). But then
S /∈ pi for all i . Contradiction.
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Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(1) Every downward directed definable family extends to a definable type.

In the o-minimal case the proof of Theorem A (1) relies on two facts:

Small boundaries: for any definable set X it holds that
dim(cl(X ) \ X ) < dimX .

For any definable family S there exists n such that every S ∈ S has at
most n definably connected components.
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Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(2) For any definable type p and definable family of sets S ⊆ p there
exists a downward directed definable family F ⊆ p finer than S.
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Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(2) For any definable type p and definable family of sets S ⊆ p there
exists a downward directed definable family F ⊆ p finer than S.

Say that a family of sets S is redivisible if the intersection of any two sets
in S is a finite union of sets from S (e.g. all intervals in a linear order).

Key observation: the restriction of a type to a redivisible family of
definable sets is always downward directed.

Proposition 7 [Johnson]

If M is o-minimal, then for any definable family of sets S there exists a
redivisible definable family of cells C such that every set in S is a finite
union of sets from C.

In particular, if S extends to a definable type p, then the restriction of p
to C is going to be a definable downward directed family finer than S.
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Theorem A [AG 2021+]

Let M be o-minimal. The following hold.

(2) For any definable type p and definable family of sets S ⊆ p there
exists a downward directed definable family F ⊆ p finer than S.

For a (partial) function f : Mn → M let

(−∞, f ) = {〈x , t〉 : x ∈ dom(f ), t < f (x)}.

The key fact in proving Theorem A (2) is that o-minimality allows
reducing the question to the case where S is a family of the form
{(−∞, fa) : a ∈ Mm}, and these sets are simple in the following sense.

For any S = (−∞, fa) and S ′ = (−∞, fb), and any
x ∈ dom(fa) ∩ dom(fb), the sets {(−∞, fa(x)), (−∞, fb(x))} are nested.
In other words for any x ∈ π(S ∩ S ′), the fibers {Sx ,S ′

x} are nested.
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Beyond o-minimality
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Conjecture 8

Suppose that there exist a collection of formulas {ϕi (x , yi ) : i ∈ I}, with
|x | = 1, such that, for every i ∈ I , the family {ϕi (M, a) : a ∈ M |yi |} is
nested. Suppose that, in any model N = (N, . . .) of Th(M), any unary
definable set is a boolean combination of sets of the form ϕi (N, a),
a ∈ N |yi |.
Then Theorem A (2) holds in M, i.e. every definable family of sets that
extends to a definable type can be refined to a downward directed family.

This conjecture would apply to weakly o-minimal theories (e.g. take all
formulas defining left unbounded intervals).
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p-adically closed fields

A p-adically closed field is a model of Th(Qp).
Johnson and Yao recently proved the following.

Proposition 9 [Johnson and Yao 2021]

Let M be a p-adically closed field. A subspace Y of a definable manifold
space is definably compact iff any 1-dimensional definable type p with
Y ∈ p has a limit in Y .

Conjecture 10 [Johnson]

Theorem A (2) holds in p-adically closed fields. In particular definable
compactness and type-compactness are equivalent for all definable
topological spaces.
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Distal cell decomposition

Let F be a finite family of definable subsets of Mn. An abstract cell
decomposition for F is a finite family C of definable subsets of Mn

satisfying that

1 Mn =
⋃
C.

2 For any F ∈ F and C ∈ C, either C ⊆ F or C ∩ F = ∅.
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2 For any F ∈ F and C ∈ C, either C ⊆ F or C ∩ F = ∅.

Distal cell decomposition

Let M be distal (e.g. weakly o-minimal o pCF). For any definable family
of sets S in M there exists a definable family D satisfying that, for any
finite F ⊆ S, there exists an abstract cell decomposition for F given by
some C ⊆ D.
Let us call D a distal cell decomposition for S.
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Distal cell decomposition

Distal cell decomposition

Let M be distal (e.g. weakly o-minimal o pCF). For any definable family
of sets S in M there exists a definable family D satisfying that, for any
finite F ⊆ S, there exists an abstract cell decomposition for F given by
some C ⊆ D.
Let us call D a distal cell decomposition for S.

Observe: any finite nonempty intersection of sets in S is going to be a
finite union of sets in D.

However D is not necessarily redivisible.

We can build a sequence of families D1,D2, . . ., where Dj is a distal cell
decomposition of Di for i < j , but there is no assurance that this sequence
will become constant.
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Two observations

Condition: M is distal and there exists finitely many definable families
S1, . . . ,Sn of subsets of M such every definable subset of M is a finite
boolean combination of sets from these families.

E.g. M o-minimal, with S1 = {(−∞, t] : t ∈ M} and
S2 = {(−∞, t) : t ∈ M}.

Let D a distal cell decomposition for ∪iSi . Then D contains an abstract
cell decomposition for any finite family of definable subsets of M. In
particular D is redivisible. So Theorem A (2) holds.
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Two observations

To prove that definable compactness implies type-compactness, it suffices
to show the existence of a redivisible definable family D such that every
basic closed set is a finite union of sets in D.

Suppose that M expands a linear order (M, <), and that the collection of
all definable <-convex sets is definable. Then, for any definable X ⊆ M, if
the order topology on X is definably compact then it is type-compact.
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Questions

1 Does Theorem A hold in all distal structures?

2 What characterization of definable compactness is available in other
generalizations of o-minimality?
E.g.

Structures with o-minimal open core.
d-minimal, noiseless, type A structures.
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Thank you for listening.
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