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Helly’s theorem (1913)

If a finite family C of convex subsets of Rd is (d+ 1)-consistent
then ∩C ̸= ∅.
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Hadwinger and Debrunner (1957): what if we weaken the
assumption and the conclusion of Helly’s theorem?

A family of sets C has the (p, q)-property, for p ≥ q ≥ 1 if,

For any p sets in C, ∀P ⊆ C, |P| = p,

there exist q many among them, ∃Q ⊆ P, |Q| = q,

with nonempty intersection. ∩Q ≠ ∅
(also ∅ /∈ C).

The (q, q)-property equals q-consistency.
As you increase p, the (p, q)-property weakens.

A set T is a transversal of C if

T ∩ C ̸= ∅ for every C ∈ C.

∩C ̸= ∅ means C has a transversal of size 1.
C has a transversal of size n > 1 is weaker.
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Conjecture (Hadwinger and Debrunner 1957)

For any p ≥ d ≥ 1 there exists an n = n(p, d) such that any
finite family of convex subsets of Rd with the (p, d+ 1)-property
has a transversal of size ≤ n.

Equivalently: Any family (possibly infinite) of convex subsets

of Rd with the (p, d+ 1)-property can be partitioned into ≤ n
consistent subfamilies.

(consistent = having the finite intersection property)
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Conjecture (Hadwinger and Debrunner 1957)
Alon-Kleitman (p, q)-theorem (1992)

For any p ≥ d ≥ 1 there exists an n = n(p, d) such that any
finite family of convex subsets of Rd with the (p, d+ 1)-property
has a transversal of size ≤ n.

Equivalently: Any family (possibly infinite) of convex subsets

of Rd with the (p, d+ 1)-property can be partitioned into ≤ n
consistent subfamilies.

In their celebrated proof Alon and Kleitman used the fractional
Helly theorem for convex sets (Katchalski-Liu 1979).



Now let us start talking about VC classes

Let F be a finite family of subsets of a set X.

Let |SF | denote the number of Boolean atoms of F .
(i.e. the number of non-empty areas in the Venn diagram
generated by F).
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Let C family of subsets of a set X.

The dual shatter function π∗C : ω → ω of C is given by

π∗C(n) = max{|SF | : F ⊆ C, |F| = n}.

E.g. π∗rectangles(3) = 8 = 23.

We know that π∗C(n) ≤ 2n for all n.

If π∗C(n) = O(nd) for some d then C is a Vapnik-Chervonenkis
class (VC class).

The VC-codensity of a VC class C is

vc∗(C) = inf{r ≥ 0 : π∗C(n) = O(nr)}.

E.g. vc∗(rectangles) = 2.
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Alon-Kleitman-Matoušek (p, q)-theorem (2004)

Let C be a VC class. Then, for any integers p ≥ q > vc∗(C),
there exists some n such that, for any subfamily F ⊆ C with the
(p, q)-property can be partitioned into at most n consistent
subfamilies.

Matoušek proved a fractional Helly theorem for VC classes and
pointed to the Alon-Kleitman method to extract a
(p, q)-theorem.



The model-theoretic framework (some standard conventions)

Let T be a theory and M |= T .

We identify a formula φ(x) with the set

φ(M) = {a ∈Mx :M |= φ(a)}.

We identify a (partitioned) formula φ(x, y) with the definable
family of sets

{φ(M, b) : b ∈My}.

So a formula φ(x, y)

may be consistent, have a (p, q)-property...

has dual shatter function π∗φ,

has VC-codensity vc∗(φ).

(All these are independent of M .)

A formula φ(x, y) is NIP (not the independence property) if it
is a VC class.
A theory/structure is NIP if every formula φ is NIP.
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So the A.K.M. (p, q)-theorem applies to NIP formulas/definable
families of sets.

Alon-Kleitman-Matoušek (p, q)-theorem (2004)

Let C be an NIP definable family of sets.
For any integers p ≥ q > vc∗(C), there exists some n such that
any subfamily F ⊆ C with the (p, q)-property can be
partitioned into at most n consistent subfamilies.

In NIP model theory the A.K.M. (p, q)-theorem has been used
to prove (Chernikov, Simon 2015) existence of uniform honest
definitions and uniform definability of types over finite sets
(UDTFS).

If F with the (p, q)-property is definable, can the consistent
subfamilies be chosen definable too?
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Forking and dividing

Fix a structure M and monster extension U .
A formula φ(x, b), b ∈ U b, does not divide over M if the family

{φ(x, c) : c ∈ U b, tp(c/M) = tp(b/M)}

has the (ω, k)-property for every k.

The A.K.M (p, q)-theorem implies: it suffices to have the

(ω, k)-property for some k > vc∗(φ).

Overall in NIP theories TFAE:

φ(x, b) does not fork over M .

φ(x, b) does not divide over M .

{φ(x, c) : c ∈ U b, tp(c/M) = tp(b/M)} is consistent.

{φ(x, c) : c ∈ U b, tp(c/M) = tp(b/M)} extends to an
M -invariant type.
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M -invariant type.

Definable (p, q)-conjecture (Simon 2015)

Let φ(x, y) be an NIP formula. If φ(x, b) does not divide over
M then there exists a formula ψ(y) ∈ tp(b/M) such that
{φ(x, c) : U |= ψ(c)} is consistent.

By model-theoretic compactness, plus the A.K.M.
(p, q)-theorem, this is equivalent to:

Let C be an NIP definable family of sets with the (p, q)-property
for some p ≥ q > vc∗(C). Then C partitions into finitely many
consistent definable subfamilies.
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Simon and Starchenko (2014) prove a stronger version of
the conjecture for some dp-minimal theories
(e.g. weakly-o-minimal, ACVF, Pres. Ar., p-adics).

Simon (2015) states the conjecture and proves it for NIP
theories with small or medium directionality (a notion
which measures the number of coheirs).

Boxall and Kestner (2018) prove the conjecture for distal
theories.

Rakotonarivo (2021) proves the conjecture for certain dense
pairs of geometric distal structures.



Theorem (AG., 2023)

Let C be a definable family of sets with vc∗(C) < 2. If C has the
(ω, 2)-property then C can be parititioned into finitely many
consistent definable subfamilies.

This improves the A.K.M. (p, q)-theorem in the case vc∗(C) < 2
((ω, 2)-property is weaker than the (p, 2)-property for p < ω).

Theorem (Kaplan, 2024)

Let M be an NIP structure. Every definable family C with the
(p, q)-property, for p ≥ q > vc∗(C), can be partitioned into
finitely many consistent definable subfamilies.

For a formula φ(x, y1, y2) and p ≥ q > vc∗(φ) there is n such
that, for all c ∈My2 , if φ(x, y1, c) has the (p, q)-property then it
can be partitioned into ≤ n consistent definable subfamilies.

Above φ(x, y1, c) is identified with the family of sets φ(M, b, c) for b ∈My1 .



Theorem (AG., 2023)

Let C be a definable family of sets with vc∗(C) < 2. If C has the
(ω, 2)-property then C can be parititioned into finitely many
consistent definable subfamilies.

This improves the A.K.M. (p, q)-theorem in the case vc∗(C) < 2
((ω, 2)-property is weaker than the (p, 2)-property for p < ω).

Theorem (Kaplan, 2024)

Let M be an NIP structure. Every definable family C with the
(p, q)-property, for p ≥ q > vc∗(C), can be partitioned into
finitely many consistent definable subfamilies.

For a formula φ(x, y1, y2) and p ≥ q > vc∗(φ) there is n such
that, for all c ∈My2 , if φ(x, y1, c) has the (p, q)-property then it
can be partitioned into ≤ n consistent definable subfamilies.

Above φ(x, y1, c) is identified with the family of sets φ(M, b, c) for b ∈My1 .



Theorem (AG., 2023)

Let C be a definable family of sets with vc∗(C) < 2. If C has the
(ω, 2)-property then C can be parititioned into finitely many
consistent definable subfamilies.

This improves the A.K.M. (p, q)-theorem in the case vc∗(C) < 2
((ω, 2)-property is weaker than the (p, 2)-property for p < ω).

Theorem (Kaplan, 2024)

Let M be an NIP structure. Every definable family C with the
(p, q)-property, for p ≥ q > vc∗(C), can be partitioned into
finitely many consistent definable subfamilies.

For a formula φ(x, y1, y2) and p ≥ q > vc∗(φ) there is n such
that, for all c ∈My2 , if φ(x, y1, c) has the (p, q)-property then it
can be partitioned into ≤ n consistent definable subfamilies.

Above φ(x, y1, c) is identified with the family of sets φ(M, b, c) for b ∈My1 .



Theorem (AG., 2023)

Let C be a definable family of sets with vc∗(C) < 2. If C has the
(ω, 2)-property then C can be parititioned into finitely many
consistent definable subfamilies.

This improves the A.K.M. (p, q)-theorem in the case vc∗(C) < 2
((ω, 2)-property is weaker than the (p, 2)-property for p < ω).

Theorem (Kaplan, 2024)

Let M be an NIP structure. Every definable family C with the
(p, q)-property, for p ≥ q > vc∗(C), can be partitioned into
finitely many consistent definable subfamilies.

For a formula φ(x, y1, y2) and p ≥ q > vc∗(φ) there is n such
that, for all c ∈My2 , if φ(x, y1, c) has the (p, q)-property then it
can be partitioned into ≤ n consistent definable subfamilies.

Above φ(x, y1, c) is identified with the family of sets φ(M, b, c) for b ∈My1 .



So, what now...

Definable (p, q)-conjecture for NIP formulas remains open.

Stronger uniform versions remain open.
(e.g. can every definable subfamily with the (p, q)-property
be partitioned into n = n(p, q) consistent subfamilies.)

In the A.K.M. (p, q)-theorem, can the (p, q)-property be
relaxed to the (ω, q)-property?


