A brief story of (model-theoretic) (p,q)-theorems

Pablo Andújar Guerrero

University of Leeds

Helly's theorem (1913)

If a <u>finite</u> family \mathcal{C} of convex subsets of \mathbb{R}^d is (d+1)-consistent then $\cap \mathcal{C} \neq \emptyset$.

Helly's theorem (1913)

If a <u>finite</u> family \mathcal{C} of convex subsets of \mathbb{R}^d is (d+1)-consistent then $\cap \mathcal{C} \neq \emptyset$.

Hadwinger and Debrunner (1957): what if we weaken the assumption and the conclusion of Helly's theorem?

Hadwinger and Debrunner (1957): what if we weaken the assumption and the conclusion of Helly's theorem?

A family of sets C has the (p, q)-property, for $p \ge q \ge 1$ if,

For any p sets in C, there exist q many among them, with nonempty intersection. (also $\emptyset \notin C$). $\forall \mathcal{P} \subseteq \mathcal{C}, \ |\mathcal{P}| = p, \\ \exists \mathcal{Q} \subseteq \mathcal{P}, \ |\mathcal{Q}| = q, \\ \cap \mathcal{Q} \neq \emptyset$

The (q, q)-property equals q-consistency. As you increase p, the (p, q)-property weakens. Hadwinger and Debrunner (1957): what if we weaken the assumption and the conclusion of Helly's theorem?

A family of sets C has the (p, q)-property, for $p \ge q \ge 1$ if,

For any p sets in C, there exist q many among them, with nonempty intersection. (also $\emptyset \notin C$). $\forall \mathcal{P} \subseteq \mathcal{C}, \ |\mathcal{P}| = p, \\ \exists \mathcal{Q} \subseteq \mathcal{P}, \ |\mathcal{Q}| = q, \\ \cap \mathcal{Q} \neq \emptyset$

The (q, q)-property equals q-consistency. As you increase p, the (p, q)-property weakens.

A set T is a *transversal* of \mathcal{C} if

 $T \cap C \neq \emptyset$ for every $C \in \mathcal{C}$.

 $\cap \mathcal{C} \neq \emptyset$ means \mathcal{C} has a transversal of size 1. \mathcal{C} has a transversal of size n > 1 is weaker.

Conjecture (Hadwinger and Debrunner 1957)

For any $p \ge d \ge 1$ there exists an n = n(p, d) such that any <u>finite</u> family of convex subsets of \mathbb{R}^d with the (p, d+1)-property has a transversal of size $\le n$.

Conjecture (Hadwinger and Debrunner 1957)

For any $p \ge d \ge 1$ there exists an n = n(p, d) such that any <u>finite</u> family of convex subsets of \mathbb{R}^d with the (p, d + 1)-property has a transversal of size $\le n$.

Equivalently: Any family (<u>possibly infinite</u>) of convex subsets of \mathbb{R}^d with the (p, d+1)-property can be partitioned into $\leq n$ consistent subfamilies.

(consistent = having the finite intersection property)

Conjecture (Hadwinger and Debrunner 1957) Alon-Kleitman (p, q)-theorem (1992)

For any $p \ge d \ge 1$ there exists an n = n(p, d) such that any finite family of convex subsets of \mathbb{R}^d with the (p, d+1)-property has a transversal of size $\le n$.

Equivalently: Any family (<u>possibly infinite</u>) of convex subsets of \mathbb{R}^d with the (p, d+1)-property can be partitioned into $\leq n$ consistent subfamilies.

In their celebrated proof Alon and Kleitman used the *fractional Helly theorem for convex sets* (Katchalski-Liu 1979).

Let \mathcal{F} be a <u>finite</u> family of subsets of a set X.

Let $|S_{\mathcal{F}}|$ denote the number of Boolean atoms of \mathcal{F} . (i.e. the number of non-empty areas in the Venn diagram generated by \mathcal{F}).

Let \mathcal{F} be a <u>finite</u> family of subsets of a set X.

Let $|S_{\mathcal{F}}|$ denote the number of Boolean atoms of \mathcal{F} . (i.e. the number of non-empty areas in the Venn diagram generated by \mathcal{F}).

 $\mathcal{F} = \{C_1, C_2, C_3\} \qquad |S_{\mathcal{F}}| = 5$

Let \mathcal{F} be a <u>finite</u> family of subsets of a set X.

Let $|S_{\mathcal{F}}|$ denote the number of Boolean atoms of \mathcal{F} . (i.e. the number of non-empty areas in the Venn diagram generated by \mathcal{F}).

 $\mathcal{F} = \{C_1, C_2, C_3\} \qquad |S_{\mathcal{F}}| = 8 = 2^3$

Let \mathcal{C} family of subsets of a set X. The *dual shatter function* $\pi^*_{\mathcal{C}} : \omega \to \omega$ of \mathcal{C} is given by

$$\pi_{\mathcal{C}}^*(n) = \max\{|S_{\mathcal{F}}| : \mathcal{F} \subseteq \mathcal{C}, |\mathcal{F}| = n\}.$$

E.g. $\pi^*_{\text{rectangles}}(3) = 8 = 2^3$.

Let \mathcal{C} family of subsets of a set X.

The dual shatter function $\pi^*_{\mathcal{C}}: \omega \to \omega$ of \mathcal{C} is given by

$$\pi_{\mathcal{C}}^*(n) = \max\{|S_{\mathcal{F}}| : \mathcal{F} \subseteq \mathcal{C}, |\mathcal{F}| = n\}.$$

E.g. $\pi^*_{\text{rectangles}}(3) = 8 = 2^3$. We know that $\pi^*_{\mathcal{C}}(n) \leq 2^n$ for all n. Let \mathcal{C} family of subsets of a set X.

The dual shatter function $\pi^*_{\mathcal{C}} : \omega \to \omega$ of \mathcal{C} is given by

$$\pi_{\mathcal{C}}^*(n) = \max\{|S_{\mathcal{F}}| : \mathcal{F} \subseteq \mathcal{C}, |\mathcal{F}| = n\}.$$

E.g. $\pi^*_{\text{rectangles}}(3) = 8 = 2^3$. We know that $\pi^*_{\mathcal{C}}(n) \leq 2^n$ for all n.

If $\pi_{\mathcal{C}}^*(n) = O(n^d)$ for some d then \mathcal{C} is a Vapnik-Chervonenkis class (VC class).

Let \mathcal{C} family of subsets of a set X.

The dual shatter function $\pi^*_{\mathcal{C}} : \omega \to \omega$ of \mathcal{C} is given by

$$\pi_{\mathcal{C}}^*(n) = \max\{|S_{\mathcal{F}}| : \mathcal{F} \subseteq \mathcal{C}, |\mathcal{F}| = n\}.$$

E.g. $\pi^*_{\text{rectangles}}(3) = 8 = 2^3$. We know that $\pi^*_{\mathcal{C}}(n) \leq 2^n$ for all n.

If $\pi_{\mathcal{C}}^*(n) = O(n^d)$ for some d then \mathcal{C} is a Vapnik-Chervonenkis class (VC class).

The *VC-codensity* of a VC class C is

$$\operatorname{vc}^{*}(\mathcal{C}) = \inf\{r \ge 0 : \pi_{\mathcal{C}}^{*}(n) = O(n^{r})\}.$$

E.g. $vc^*(rectangles) = 2$.

Alon-Kleitman-Matoušek (p, q)-theorem (2004)

Let \mathcal{C} be a VC class. Then, for any integers $p \geq q > \mathrm{vc}^*(\mathcal{C})$, there exists some n such that, for any subfamily $\mathcal{F} \subseteq \mathcal{C}$ with the (p,q)-property can be partitioned into at most n consistent subfamilies.

Matoušek proved a fractional Helly theorem for VC classes and pointed to the Alon-Kleitman method to extract a (p,q)-theorem.

The model-theoretic framework (some standard conventions)

Let T be a theory and $M \models T$.

We identify a formula $\varphi(x)$ with the set

$$\varphi(M) = \{a \in M^x : M \models \varphi(a)\}.$$

We identify a (partitioned) formula $\varphi(x, y)$ with the definable family of sets

$$\{\varphi(M,b): b \in M^y\}.$$

So a formula $\varphi(x, y)$

 \blacksquare may be consistent, have a (p,q)-property...

- has dual shatter function π^*_{φ} ,
- has VC-codensity $vc^*(\varphi)$.

(All these are independent of M.)

The model-theoretic framework (some standard conventions)

Let T be a theory and $M \models T$.

We identify a formula $\varphi(x)$ with the set

$$\varphi(M) = \{ a \in M^x : M \models \varphi(a) \}.$$

We identify a (partitioned) formula $\varphi(x, y)$ with the definable family of sets

$$\{\varphi(M,b): b \in M^y\}.$$

So a formula $\varphi(x, y)$

 \blacksquare may be consistent, have a (p,q)-property...

- has dual shatter function π^*_{φ} ,
- has VC-codensity $vc^*(\varphi)$.

(All these are independent of M.)

A formula $\varphi(x, y)$ is *NIP* (not the independence property) if it is a VC class.

A theory/structure is *NIP* if every formula φ is NIP.

So the A.K.M. $(p,q)\mbox{-theorem}$ applies to NIP formulas/definable families of sets.

Alon-Kleitman-Matoušek (p, q)-theorem (2004)

Let C be an NIP definable family of sets. For any integers $p \ge q > \operatorname{vc}^*(C)$, there exists some n such that any subfamily $\mathcal{F} \subseteq C$ with the (p, q)-property can be partitioned into at most n consistent subfamilies. So the A.K.M. (p,q)-theorem applies to NIP formulas/definable families of sets.

Alon-Kleitman-Matoušek (p, q)-theorem (2004)

Let C be an NIP definable family of sets. For any integers $p \ge q > \operatorname{vc}^*(C)$, there exists some n such that any subfamily $\mathcal{F} \subseteq C$ with the (p, q)-property can be partitioned into at most n consistent subfamilies.

In NIP model theory the A.K.M. (p,q)-theorem has been used to prove (Chernikov, Simon 2015) existence of uniform honest definitions and uniform definability of types over finite sets (UDTFS). So the A.K.M. $(p,q)\mbox{-theorem}$ applies to NIP formulas/definable families of sets.

Alon-Kleitman-Matoušek (p, q)-theorem (2004)

Let \mathcal{C} be an NIP definable family of sets. For any integers $p \ge q > \operatorname{vc}^*(\mathcal{C})$, there exists some n such that any subfamily $\mathcal{F} \subseteq \mathcal{C}$ with the (p,q)-property can be partitioned into at most n consistent subfamilies.

In NIP model theory the A.K.M. (p, q)-theorem has been used to prove (Chernikov, Simon 2015) existence of uniform honest definitions and uniform definability of types over finite sets (UDTFS).

If \mathcal{F} with the (p, q)-property is definable, can the consistent subfamilies be chosen definable too?

Forking and dividing

Forking and dividing

Fix a structure M and monster extension U. A formula $\varphi(x, b), b \in U^b$, does **not** divide over M if the family

$$\{\varphi(x,c): c \in U^b, \operatorname{tp}(c/M) = \operatorname{tp}(b/M)\}\$$

has the (ω, k) -property for every k.

The A.K.M (p, q)-theorem implies: it suffices to have the (ω, k) -property for some $k > \mathrm{vc}^*(\varphi)$.

Forking and dividing

Fix a structure M and monster extension U. A formula $\varphi(x, b), b \in U^b$, does **not** divide over M if the family

$$\{\varphi(x,c): c \in U^b, \operatorname{tp}(c/M) = \operatorname{tp}(b/M)\}$$

has the (ω, k) -property for every k.

The A.K.M (p,q)-theorem implies: it suffices to have the (ω, k) -property for some $k > \mathrm{vc}^*(\varphi)$.

Overall in NIP theories TFAE:

- $\varphi(x, b)$ does not fork over M.
- $\varphi(x, b)$ does not divide over M.
- $\{\varphi(x,c): c \in U^b, \operatorname{tp}(c/M) = \operatorname{tp}(b/M)\}$ is consistent.
- $\{\varphi(x,c): c \in U^b, \operatorname{tp}(c/M) = \operatorname{tp}(b/M)\}$ extends to an *M*-invariant type.

• $\{\varphi(x,c): c \in U^b, \operatorname{tp}(c/M) = \operatorname{tp}(b/M)\}$ extends to an *M*-invariant type.

• $\{\varphi(x,c): c \in U^b, \operatorname{tp}(c/M) = \operatorname{tp}(b/M)\}$ extends to an *M*-invariant type.

Definable (p, q)-conjecture (Simon 2015)

Let $\varphi(x, y)$ be an NIP formula. If $\varphi(x, b)$ does not divide over M then there exists a formula $\psi(y) \in \operatorname{tp}(b/M)$ such that $\{\varphi(x, c) : U \models \psi(c)\}$ is consistent.

• $\{\varphi(x,c): c \in U^b, \operatorname{tp}(c/M) = \operatorname{tp}(b/M)\}$ extends to an *M*-invariant type.

Definable (p, q)-conjecture (Simon 2015)

Let $\varphi(x, y)$ be an NIP formula. If $\varphi(x, b)$ does not divide over M then there exists a formula $\psi(y) \in \operatorname{tp}(b/M)$ such that $\{\varphi(x, c) : U \models \psi(c)\}$ is consistent.

By model-theoretic compactness, plus the A.K.M. (p,q)-theorem, this is equivalent to:

Let \mathcal{C} be an NIP definable family of sets with the (p, q)-property for some $p \ge q > \operatorname{vc}^*(\mathcal{C})$. Then \mathcal{C} partitions into finitely many consistent definable subfamilies.

- Simon and Starchenko (2014) prove a stronger version of the conjecture for some dp-minimal theories (e.g. weakly-o-minimal, ACVF, Pres. Ar., p-adics).
- Simon (2015) states the conjecture and proves it for NIP theories with small or medium directionality (a notion which measures the number of coheirs).
- Boxall and Kestner (2018) prove the conjecture for distal theories.
- Rakotonarivo (2021) proves the conjecture for certain dense pairs of geometric distal structures.

Let C be a definable family of sets with $vc^*(C) < 2$. If C has the $(\omega, 2)$ -property then C can be partitioned into finitely many consistent definable subfamilies.

Let C be a definable family of sets with $vc^*(C) < 2$. If C has the $(\omega, 2)$ -property then C can be partitioned into finitely many consistent definable subfamilies.

This improves the A.K.M. (p,q)-theorem in the case vc^{*}(C) < 2 $((\omega, 2)$ -property is weaker than the (p, 2)-property for $p < \omega$).

Let C be a definable family of sets with vc^{*}(C) < 2. If C has the $(\omega, 2)$ -property then C can be partitioned into finitely many consistent definable subfamilies.

This improves the A.K.M. (p,q)-theorem in the case vc^{*}(C) < 2 $((\omega, 2)$ -property is weaker than the (p, 2)-property for $p < \omega$).

Theorem (Kaplan, 2024)

Let M be an NIP structure. Every definable family \mathcal{C} with the (p,q)-property, for $p \geq q > \operatorname{vc}^*(\mathcal{C})$, can be partitioned into finitely many consistent definable subfamilies.

Let C be a definable family of sets with vc^{*}(C) < 2. If C has the $(\omega, 2)$ -property then C can be partitioned into finitely many consistent definable subfamilies.

This improves the A.K.M. (p,q)-theorem in the case vc^{*}(C) < 2 $((\omega, 2)$ -property is weaker than the (p, 2)-property for $p < \omega$).

Theorem (Kaplan, 2024)

Let M be an NIP structure. Every definable family \mathcal{C} with the (p,q)-property, for $p \geq q > \operatorname{vc}^*(\mathcal{C})$, can be partitioned into finitely many consistent definable subfamilies.

For a formula $\varphi(x, y_1, y_2)$ and $p \ge q > \operatorname{vc}^*(\varphi)$ there is n such that, for all $c \in M^{y_2}$, if $\varphi(x, y_1, c)$ has the (p, q)-property then it can be partitioned into $\le n$ consistent definable subfamilies.

Above $\varphi(x, y_1, c)$ is identified with the family of sets $\varphi(M, b, c)$ for $b \in M^{y_1}$.

So, what now...

- Definable (p, q)-conjecture for NIP formulas remains open.
- Stronger uniform versions remain open.
 (e.g. can every definable subfamily with the (p,q)-property be partitioned into n = n(p,q) consistent subfamilies.)
- In the A.K.M. (p, q)-theorem, can the (p, q)-property be relaxed to the (ω, q) -property?