A brief story of (model-theoretic) (p, q) -theorems

Pablo Andújar Guerrero

University of Leeds

Helly's theorem (1913)

If a <u>finite</u> family C of convex subsets of \mathbb{R}^d is $(d+1)$ -consistent then $\cap \mathcal{C} \neq \emptyset$.

Helly's theorem (1913)

If a <u>finite</u> family C of convex subsets of \mathbb{R}^d is $(d+1)$ -consistent then $\cap \mathcal{C} \neq \emptyset$.

Hadwinger and Debrunner (1957): what if we weaken the assumption and the conclusion of Helly's theorem?

Hadwinger and Debrunner (1957): what if we weaken the assumption and the conclusion of Helly's theorem?

A family of sets C has the (p, q) -property, for $p > q > 1$ if,

For any p sets in C, $\forall \mathcal{P} \subseteq \mathcal{C}, |\mathcal{P}| = p$, there exist q many among them, $\exists Q \subset \mathcal{P}, |\mathcal{Q}| = q$, with nonempty intersection. $\bigcap \mathcal{Q} \neq \emptyset$ (also $\emptyset \notin \mathcal{C}$).

The (q, q) -property equals q-consistency. As you increase p , the (p, q) -property weakens.

Hadwinger and Debrunner (1957): what if we weaken the assumption and the conclusion of Helly's theorem?

A family of sets C has the (p, q) -property, for $p > q > 1$ if,

For any p sets in C, $\forall \mathcal{P} \subseteq \mathcal{C}, |\mathcal{P}| = p$, there exist q many among them, $\exists Q \subset \mathcal{P}, |\mathcal{Q}| = q$, with nonempty intersection. $\bigcap \mathcal{Q} \neq \emptyset$ (also $\emptyset \notin \mathcal{C}$).

The (q, q) -property equals q-consistency. As you increase p , the (p, q) -property weakens.

A set T is a *transversal* of C if

 $T \cap C \neq \emptyset$ for every $C \in \mathcal{C}$.

 $\cap \mathcal{C} \neq \emptyset$ means \mathcal{C} has a transversal of size 1. C has a transversal of size $n > 1$ is weaker.

Conjecture (Hadwinger and Debrunner 1957)

For any $p \geq d \geq 1$ there exists an $n = n(p, d)$ such that any finite family of convex subsets of \mathbb{R}^d with the $(p, d+1)$ -property has a transversal of size $\leq n$.

Conjecture (Hadwinger and Debrunner 1957)

For any $p \geq d \geq 1$ there exists an $n = n(p, d)$ such that any finite family of convex subsets of \mathbb{R}^d with the $(p, d+1)$ -property has a transversal of size $\leq n$.

Equivalently: Any family (possibly infinite) of convex subsets of \mathbb{R}^d with the $(p, d+1)$ -property can be partitioned into $\leq n$ consistent subfamilies.

 $($ consistent $=$ having the finite intersection property $)$

Conjecture (Hadwinger and Debrunner 1957) Alon-Kleitman (p, q)-theorem (1992)

For any $p \geq d \geq 1$ there exists an $n = n(p, d)$ such that any finite family of convex subsets of \mathbb{R}^d with the $(p, d+1)$ -property has a transversal of size $\leq n$.

Equivalently: Any family (possibly infinite) of convex subsets of \mathbb{R}^d with the $(p, d+1)$ -property can be partitioned into $\leq n$ consistent subfamilies.

In their celebrated proof Alon and Kleitman used the fractional Helly theorem for convex sets (Katchalski-Liu 1979).

Let $\mathcal F$ be a finite family of subsets of a set X .

Let $|S_{\mathcal{F}}|$ denote the number of Boolean atoms of \mathcal{F} . (i.e. the number of non-empty areas in the Venn diagram generated by \mathcal{F}).

Let $\mathcal F$ be a finite family of subsets of a set X . Let $|S_{\mathcal{F}}|$ denote the number of Boolean atoms of \mathcal{F} . (i.e. the number of non-empty areas in the Venn diagram generated by \mathcal{F}).

 $\mathcal{F} = \{C_1, C_2, C_3\}$ $|S_{\mathcal{F}}| = 5$

Let $\mathcal F$ be a finite family of subsets of a set X . Let $|S_{\mathcal{F}}|$ denote the number of Boolean atoms of \mathcal{F} . (i.e. the number of non-empty areas in the Venn diagram generated by \mathcal{F}).

 $\mathcal{F} = \{C_1, C_2, C_3\}$ $|S_{\mathcal{F}}| = 8 = 2^3$

The *dual shatter function* $\pi_{\mathcal{C}}^* : \omega \to \omega$ of \mathcal{C} is given by

$$
\pi_{\mathcal{C}}^*(n)=\max\{|S_{\mathcal{F}}|:\mathcal{F}\subseteq \mathcal{C},\,|\mathcal{F}|=n\}.
$$

E.g. $\pi_{\text{rectangles}}^*(3) = 8 = 2^3$.

The *dual shatter function* $\pi_{\mathcal{C}}^* : \omega \to \omega$ of \mathcal{C} is given by

$$
\pi_{\mathcal{C}}^*(n)=\max\{|S_{\mathcal{F}}|:\mathcal{F}\subseteq\mathcal{C},\,|\mathcal{F}|=n\}.
$$

E.g. $\pi_{\text{rectangles}}^*(3) = 8 = 2^3$. We know that $\pi_{\mathcal{C}}^*(n) \leq 2^n$ for all *n*.

The *dual shatter function* $\pi_{\mathcal{C}}^* : \omega \to \omega$ of \mathcal{C} is given by

$$
\pi_{\mathcal{C}}^*(n) = \max\{|S_{\mathcal{F}}| : \mathcal{F} \subseteq \mathcal{C}, |\mathcal{F}| = n\}.
$$

E.g. $\pi_{\text{rectangles}}^*(3) = 8 = 2^3$. We know that $\pi_{\mathcal{C}}^*(n) \leq 2^n$ for all *n*.

If $\pi_{\mathcal{C}}^*(n) = O(n^d)$ for some d then C is a Vapnik-Chervonenkis class (VC class).

The *dual shatter function* $\pi_{\mathcal{C}}^* : \omega \to \omega$ of \mathcal{C} is given by

$$
\pi_{\mathcal{C}}^*(n) = \max\{|S_{\mathcal{F}}| : \mathcal{F} \subseteq \mathcal{C}, |\mathcal{F}| = n\}.
$$

E.g. $\pi_{\text{rectangles}}^*(3) = 8 = 2^3$. We know that $\pi_{\mathcal{C}}^*(n) \leq 2^n$ for all *n*.

If $\pi_{\mathcal{C}}^*(n) = O(n^d)$ for some d then C is a Vapnik-Chervonenkis class (VC class).

The *VC-codensity* of a VC class $\mathcal C$ is

$$
\text{vc}^*(\mathcal{C}) = \inf \{ r \ge 0 : \pi_{\mathcal{C}}^*(n) = O(n^r) \}.
$$

E.g. $vc^*(\text{rectangles}) = 2$.

Alon-Kleitman-Matoušek (p, q) -theorem (2004)

Let C be a VC class. Then, for any integers $p \ge q > \text{vc}^*(\mathcal{C})$, there exists some *n* such that, for any subfamily $\mathcal{F} \subseteq \mathcal{C}$ with the (p, q) -property can be partitioned into at most n consistent subfamilies.

Matoušek proved a fractional Helly theorem for VC classes and pointed to the Alon-Kleitman method to extract a (p, q) -theorem.

The model-theoretic framework (some standard conventions)

Let T be a theory and $M \models T$.

We identify a formula $\varphi(x)$ with the set

$$
\varphi(M) = \{ a \in M^x : M \models \varphi(a) \}.
$$

We identify a (partitioned) formula $\varphi(x, y)$ with the definable family of sets

$$
\{\varphi(M,b):b\in M^y\}.
$$

So a formula $\varphi(x, y)$

n may be consistent, have a (p, q) -property...

- has dual shatter function π^*_{φ} ,
- has VC-codensity $vc^*(\varphi)$.

(All these are independent of M.)

The model-theoretic framework (some standard conventions)

Let T be a theory and $M \models T$.

We identify a formula $\varphi(x)$ with the set

$$
\varphi(M) = \{ a \in M^x : M \models \varphi(a) \}.
$$

We identify a (partitioned) formula $\varphi(x, y)$ with the definable family of sets

$$
\{\varphi(M,b):b\in M^y\}.
$$

So a formula $\varphi(x, y)$

 \blacksquare may be consistent, have a (p, q) -property...

- has dual shatter function π^*_{φ} ,
- has VC-codensity $vc^*(\varphi)$.

(All these are independent of M.)

A formula $\varphi(x, y)$ is NIP (not the independence property) if it is a VC class.

A theory/structure is NIP if every formula φ is NIP.

So the A.K.M. (p, q) -theorem applies to NIP formulas/definable families of sets.

Alon-Kleitman-Matoušek (p, q) -theorem (2004)

Let $\mathcal C$ be an NIP definable family of sets. For any integers $p \ge q > \text{vc}^*(\mathcal{C})$, there exists some *n* such that any subfamily $\mathcal{F} \subseteq \mathcal{C}$ with the (p, q) -property can be partitioned into at most n consistent subfamilies.

So the A.K.M. (p, q) -theorem applies to NIP formulas/definable families of sets.

Alon-Kleitman-Matoušek (p, q) -theorem (2004)

Let $\mathcal C$ be an NIP definable family of sets. For any integers $p \ge q > \text{vc}^*(\mathcal{C})$, there exists some *n* such that any subfamily $\mathcal{F} \subset \mathcal{C}$ with the (p, q) -property can be partitioned into at most n consistent subfamilies.

In NIP model theory the A.K.M. (p, q) -theorem has been used to prove (Chernikov, Simon 2015) existence of uniform honest definitions and uniform definability of types over finite sets (UDTFS).

So the A.K.M. (p, q) -theorem applies to NIP formulas/definable families of sets.

Alon-Kleitman-Matoušek (p, q) -theorem (2004)

Let $\mathcal C$ be an NIP definable family of sets. For any integers $p \ge q > \text{vc}^*(\mathcal{C})$, there exists some *n* such that any subfamily $\mathcal{F} \subseteq \mathcal{C}$ with the (p, q) -property can be partitioned into at most n consistent subfamilies.

In NIP model theory the A.K.M. (p, q) -theorem has been used to prove (Chernikov, Simon 2015) existence of uniform honest definitions and uniform definability of types over finite sets (UDTFS).

If $\mathcal F$ with the (p, q) -property is definable, can the consistent subfamilies be chosen definable too?

Forking and dividing

Forking and dividing

Fix a structure M and monster extension U. A formula $\varphi(x, b), b \in U^b$, does **not** divide over M if the family

$$
\{\varphi(x,c) : c \in U^b, \, \text{tp}(c/M) = \text{tp}(b/M)\}
$$

has the (ω, k) -property for every k.

The A.K.M (p, q) -theorem implies: it suffices to have the (ω, k) -property for some $k > \text{vc}^*(\varphi)$.

Forking and dividing

Fix a structure M and monster extension U . A formula $\varphi(x, b), b \in U^b$, does **not** divide over M if the family

$$
\{\varphi(x,c) : c \in U^b, \, \text{tp}(c/M) = \text{tp}(b/M)\}
$$

has the (ω, k) -property for every k.

The A.K.M (p, q) -theorem implies: it suffices to have the (ω, k) -property for some $k > \text{vc}^*(\varphi)$.

Overall in NIP theories TFAE:

- \bullet $\varphi(x, b)$ does not fork over M.
- \bullet $\varphi(x, b)$ does not divide over M.
- $\{\varphi(x,c): c \in U^b, \text{tp}(c/M) = \text{tp}(b/M)\}\$ is consistent.
- $\{\varphi(x,c):c\in U^b,\text{tp}(c/M)=\text{tp}(b/M)\}\)$ extends to an M-invariant type.

$\{\varphi(x,c):c\in U^b,\text{tp}(c/M)=\text{tp}(b/M)\}\)$ extends to an M-invariant type.

 $\{\varphi(x,c):c\in U^b,\text{tp}(c/M)=\text{tp}(b/M)\}\)$ extends to an M-invariant type.

Definable (p, q)-conjecture (Simon 2015)

Let $\varphi(x, y)$ be an NIP formula. If $\varphi(x, b)$ does not divide over M then there exists a formula $\psi(y) \in \text{tp}(b/M)$ such that $\{\varphi(x,c): U \models \psi(c)\}\$ is consistent.

 $\{\varphi(x,c):c\in U^b,\text{tp}(c/M)=\text{tp}(b/M)\}\)$ extends to an M-invariant type.

Definable (p, q)-conjecture (Simon 2015)

Let $\varphi(x, y)$ be an NIP formula. If $\varphi(x, b)$ does not divide over M then there exists a formula $\psi(y) \in \text{tp}(b/M)$ such that $\{\varphi(x,c): U \models \psi(c)\}\$ is consistent.

By model-theoretic compactness, plus the A.K.M. (p, q) -theorem, this is equivalent to:

Let C be an NIP definable family of sets with the (p, q) -property for some $p \ge q > \text{vc}^*(\mathcal{C})$. Then $\mathcal C$ partitions into finitely many consistent definable subfamilies.

- Simon and Starchenko (2014) prove a stronger version of the conjecture for some dp-minimal theories (e.g. weakly-o-minimal, ACVF, Pres. Ar., p-adics).
- Simon (2015) states the conjecture and proves it for NIP theories with small or medium directionality (a notion which measures the number of coheirs).
- Boxall and Kestner (2018) prove the conjecture for distal theories.
- Rakotonarivo (2021) proves the conjecture for certain dense pairs of geometric distal structures.

Let C be a definable family of sets with $vc^*(\mathcal{C}) < 2$. If C has the $(\omega, 2)$ -property then C can be parititioned into finitely many consistent definable subfamilies.

Let C be a definable family of sets with $vc^*(\mathcal{C}) < 2$. If C has the $(\omega, 2)$ -property then C can be parititioned into finitely many consistent definable subfamilies.

This improves the A.K.M. (p, q) -theorem in the case vc^{*} $(\mathcal{C}) < 2$ $((\omega, 2)$ -property is weaker than the $(p, 2)$ -property for $p < \omega$).

Let C be a definable family of sets with $vc^*(\mathcal{C}) < 2$. If C has the $(\omega, 2)$ -property then C can be parititioned into finitely many consistent definable subfamilies.

This improves the A.K.M. (p, q) -theorem in the case vc^{*} $(\mathcal{C}) < 2$ $((\omega, 2)$ -property is weaker than the $(p, 2)$ -property for $p < \omega$).

Theorem (Kaplan, 2024)

Let M be an NIP structure. Every definable family $\mathcal C$ with the (p, q) -property, for $p \ge q > \text{vc}^*(\mathcal{C})$, can be partitioned into finitely many consistent definable subfamilies.

Let C be a definable family of sets with $vc^*(\mathcal{C}) < 2$. If C has the $(\omega, 2)$ -property then C can be parititioned into finitely many consistent definable subfamilies.

This improves the A.K.M. (p, q) -theorem in the case vc^{*} $(\mathcal{C}) < 2$ $((\omega, 2)$ -property is weaker than the $(p, 2)$ -property for $p < \omega$).

Theorem (Kaplan, 2024)

Let M be an NIP structure. Every definable family $\mathcal C$ with the (p, q) -property, for $p \ge q > \text{vc}^*(\mathcal{C})$, can be partitioned into finitely many consistent definable subfamilies.

For a formula $\varphi(x, y_1, y_2)$ and $p \ge q > \text{vc}^*(\varphi)$ there is n such that, for all $c \in M^{y_2}$, if $\varphi(x, y_1, c)$ has the (p, q) -property then it can be partitioned into $\leq n$ consistent definable subfamilies.

Above $\varphi(x, y_1, c)$ is identified with the family of sets $\varphi(M, b, c)$ for $b \in M^{y_1}$.

So, what now...

- Definable (p, q) -conjecture for NIP formulas remains open.
- Stronger uniform versions remain open. (e.g. can every definable subfamily with the (p, q) -property be partitioned into $n = n(p, q)$ consistent subfamilies.)
- In the A.K.M. (p, q) -theorem, can the (p, q) -property be relaxed to the (ω, q) -property?